MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem2 Structured version   Visualization version   GIF version

Theorem ruclem2 16268
Description: Lemma for ruc 16279. Ordering property for the input to 𝐷. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruclem1.3 (𝜑𝐴 ∈ ℝ)
ruclem1.4 (𝜑𝐵 ∈ ℝ)
ruclem1.5 (𝜑𝑀 ∈ ℝ)
ruclem1.6 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem1.7 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem2.8 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ruclem2 (𝜑 → (𝐴𝑋𝑋 < 𝑌𝑌𝐵))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑥,𝑦   𝑚,𝐹,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)   𝑋(𝑥,𝑦,𝑚)   𝑌(𝑥,𝑦,𝑚)

Proof of Theorem ruclem2
StepHypRef Expression
1 ruclem1.3 . . . . 5 (𝜑𝐴 ∈ ℝ)
21leidd 11829 . . . 4 (𝜑𝐴𝐴)
3 ruclem1.4 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
41, 3readdcld 11290 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
54rehalfcld 12513 . . . . . . 7 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
65, 3readdcld 11290 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) / 2) + 𝐵) ∈ ℝ)
76rehalfcld 12513 . . . . 5 (𝜑 → ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ ℝ)
8 ruclem2.8 . . . . . . 7 (𝜑𝐴 < 𝐵)
9 avglt1 12504 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
101, 3, 9syl2anc 584 . . . . . . 7 (𝜑 → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
118, 10mpbid 232 . . . . . 6 (𝜑𝐴 < ((𝐴 + 𝐵) / 2))
12 avglt2 12505 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
131, 3, 12syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
148, 13mpbid 232 . . . . . . 7 (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵)
15 avglt1 12504 . . . . . . . 8 ((((𝐴 + 𝐵) / 2) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
165, 3, 15syl2anc 584 . . . . . . 7 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
1714, 16mpbid 232 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
181, 5, 7, 11, 17lttrd 11422 . . . . 5 (𝜑𝐴 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
191, 7, 18ltled 11409 . . . 4 (𝜑𝐴 ≤ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
20 breq2 5147 . . . . 5 (𝐴 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → (𝐴𝐴𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))))
21 breq2 5147 . . . . 5 (((((𝐴 + 𝐵) / 2) + 𝐵) / 2) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → (𝐴 ≤ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ↔ 𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))))
2220, 21ifboth 4565 . . . 4 ((𝐴𝐴𝐴 ≤ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → 𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
232, 19, 22syl2anc 584 . . 3 (𝜑𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
24 ruc.1 . . . . 5 (𝜑𝐹:ℕ⟶ℝ)
25 ruc.2 . . . . 5 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
26 ruclem1.5 . . . . 5 (𝜑𝑀 ∈ ℝ)
27 ruclem1.6 . . . . 5 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
28 ruclem1.7 . . . . 5 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
2924, 25, 1, 3, 26, 27, 28ruclem1 16267 . . . 4 (𝜑 → ((⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
3029simp2d 1144 . . 3 (𝜑𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
3123, 30breqtrrd 5171 . 2 (𝜑𝐴𝑋)
32 iftrue 4531 . . . . . 6 (((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) = 𝐴)
33 iftrue 4531 . . . . . 6 (((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) = ((𝐴 + 𝐵) / 2))
3432, 33breq12d 5156 . . . . 5 (((𝐴 + 𝐵) / 2) < 𝑀 → (if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ↔ 𝐴 < ((𝐴 + 𝐵) / 2)))
3511, 34syl5ibrcom 247 . . . 4 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
36 avglt2 12505 . . . . . . 7 ((((𝐴 + 𝐵) / 2) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵))
375, 3, 36syl2anc 584 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵))
3814, 37mpbid 232 . . . . 5 (𝜑 → ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵)
39 iffalse 4534 . . . . . 6 (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
40 iffalse 4534 . . . . . 6 (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) = 𝐵)
4139, 40breq12d 5156 . . . . 5 (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → (if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ↔ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵))
4238, 41syl5ibrcom 247 . . . 4 (𝜑 → (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
4335, 42pm2.61d 179 . . 3 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
4429simp3d 1145 . . 3 (𝜑𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
4543, 30, 443brtr4d 5175 . 2 (𝜑𝑋 < 𝑌)
465, 3, 14ltled 11409 . . . 4 (𝜑 → ((𝐴 + 𝐵) / 2) ≤ 𝐵)
473leidd 11829 . . . 4 (𝜑𝐵𝐵)
48 breq1 5146 . . . . 5 (((𝐴 + 𝐵) / 2) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) → (((𝐴 + 𝐵) / 2) ≤ 𝐵 ↔ if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵))
49 breq1 5146 . . . . 5 (𝐵 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) → (𝐵𝐵 ↔ if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵))
5048, 49ifboth 4565 . . . 4 ((((𝐴 + 𝐵) / 2) ≤ 𝐵𝐵𝐵) → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵)
5146, 47, 50syl2anc 584 . . 3 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵)
5244, 51eqbrtrd 5165 . 2 (𝜑𝑌𝐵)
5331, 45, 523jca 1129 1 (𝜑 → (𝐴𝑋𝑋 < 𝑌𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1087   = wceq 1540  wcel 2108  csb 3899  ifcif 4525  cop 4632   class class class wbr 5143   × cxp 5683  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  1st c1st 8012  2nd c2nd 8013  cr 11154   + caddc 11158   < clt 11295  cle 11296   / cdiv 11920  cn 12266  2c2 12321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-2 12329
This theorem is referenced by:  ruclem8  16273  ruclem9  16274
  Copyright terms: Public domain W3C validator