MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem2 Structured version   Visualization version   GIF version

Theorem ruclem2 16250
Description: Lemma for ruc 16261. Ordering property for the input to 𝐷. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruclem1.3 (𝜑𝐴 ∈ ℝ)
ruclem1.4 (𝜑𝐵 ∈ ℝ)
ruclem1.5 (𝜑𝑀 ∈ ℝ)
ruclem1.6 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem1.7 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem2.8 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ruclem2 (𝜑 → (𝐴𝑋𝑋 < 𝑌𝑌𝐵))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑥,𝑦   𝑚,𝐹,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)   𝑋(𝑥,𝑦,𝑚)   𝑌(𝑥,𝑦,𝑚)

Proof of Theorem ruclem2
StepHypRef Expression
1 ruclem1.3 . . . . 5 (𝜑𝐴 ∈ ℝ)
21leidd 11811 . . . 4 (𝜑𝐴𝐴)
3 ruclem1.4 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
41, 3readdcld 11272 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
54rehalfcld 12496 . . . . . . 7 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
65, 3readdcld 11272 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) / 2) + 𝐵) ∈ ℝ)
76rehalfcld 12496 . . . . 5 (𝜑 → ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ ℝ)
8 ruclem2.8 . . . . . . 7 (𝜑𝐴 < 𝐵)
9 avglt1 12487 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
101, 3, 9syl2anc 584 . . . . . . 7 (𝜑 → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
118, 10mpbid 232 . . . . . 6 (𝜑𝐴 < ((𝐴 + 𝐵) / 2))
12 avglt2 12488 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
131, 3, 12syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
148, 13mpbid 232 . . . . . . 7 (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵)
15 avglt1 12487 . . . . . . . 8 ((((𝐴 + 𝐵) / 2) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
165, 3, 15syl2anc 584 . . . . . . 7 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
1714, 16mpbid 232 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
181, 5, 7, 11, 17lttrd 11404 . . . . 5 (𝜑𝐴 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
191, 7, 18ltled 11391 . . . 4 (𝜑𝐴 ≤ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
20 breq2 5127 . . . . 5 (𝐴 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → (𝐴𝐴𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))))
21 breq2 5127 . . . . 5 (((((𝐴 + 𝐵) / 2) + 𝐵) / 2) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → (𝐴 ≤ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ↔ 𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))))
2220, 21ifboth 4545 . . . 4 ((𝐴𝐴𝐴 ≤ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → 𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
232, 19, 22syl2anc 584 . . 3 (𝜑𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
24 ruc.1 . . . . 5 (𝜑𝐹:ℕ⟶ℝ)
25 ruc.2 . . . . 5 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
26 ruclem1.5 . . . . 5 (𝜑𝑀 ∈ ℝ)
27 ruclem1.6 . . . . 5 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
28 ruclem1.7 . . . . 5 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
2924, 25, 1, 3, 26, 27, 28ruclem1 16249 . . . 4 (𝜑 → ((⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
3029simp2d 1143 . . 3 (𝜑𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
3123, 30breqtrrd 5151 . 2 (𝜑𝐴𝑋)
32 iftrue 4511 . . . . . 6 (((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) = 𝐴)
33 iftrue 4511 . . . . . 6 (((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) = ((𝐴 + 𝐵) / 2))
3432, 33breq12d 5136 . . . . 5 (((𝐴 + 𝐵) / 2) < 𝑀 → (if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ↔ 𝐴 < ((𝐴 + 𝐵) / 2)))
3511, 34syl5ibrcom 247 . . . 4 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
36 avglt2 12488 . . . . . . 7 ((((𝐴 + 𝐵) / 2) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵))
375, 3, 36syl2anc 584 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵))
3814, 37mpbid 232 . . . . 5 (𝜑 → ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵)
39 iffalse 4514 . . . . . 6 (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
40 iffalse 4514 . . . . . 6 (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) = 𝐵)
4139, 40breq12d 5136 . . . . 5 (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → (if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ↔ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵))
4238, 41syl5ibrcom 247 . . . 4 (𝜑 → (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
4335, 42pm2.61d 179 . . 3 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
4429simp3d 1144 . . 3 (𝜑𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
4543, 30, 443brtr4d 5155 . 2 (𝜑𝑋 < 𝑌)
465, 3, 14ltled 11391 . . . 4 (𝜑 → ((𝐴 + 𝐵) / 2) ≤ 𝐵)
473leidd 11811 . . . 4 (𝜑𝐵𝐵)
48 breq1 5126 . . . . 5 (((𝐴 + 𝐵) / 2) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) → (((𝐴 + 𝐵) / 2) ≤ 𝐵 ↔ if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵))
49 breq1 5126 . . . . 5 (𝐵 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) → (𝐵𝐵 ↔ if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵))
5048, 49ifboth 4545 . . . 4 ((((𝐴 + 𝐵) / 2) ≤ 𝐵𝐵𝐵) → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵)
5146, 47, 50syl2anc 584 . . 3 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵)
5244, 51eqbrtrd 5145 . 2 (𝜑𝑌𝐵)
5331, 45, 523jca 1128 1 (𝜑 → (𝐴𝑋𝑋 < 𝑌𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086   = wceq 1539  wcel 2107  csb 3879  ifcif 4505  cop 4612   class class class wbr 5123   × cxp 5663  wf 6537  cfv 6541  (class class class)co 7413  cmpo 7415  1st c1st 7994  2nd c2nd 7995  cr 11136   + caddc 11140   < clt 11277  cle 11278   / cdiv 11902  cn 12248  2c2 12303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311
This theorem is referenced by:  ruclem8  16255  ruclem9  16256
  Copyright terms: Public domain W3C validator