MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem2 Structured version   Visualization version   GIF version

Theorem ruclem2 15585
Description: Lemma for ruc 15596. Ordering property for the input to 𝐷. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruclem1.3 (𝜑𝐴 ∈ ℝ)
ruclem1.4 (𝜑𝐵 ∈ ℝ)
ruclem1.5 (𝜑𝑀 ∈ ℝ)
ruclem1.6 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem1.7 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem2.8 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ruclem2 (𝜑 → (𝐴𝑋𝑋 < 𝑌𝑌𝐵))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑥,𝑦   𝑚,𝐹,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)   𝑋(𝑥,𝑦,𝑚)   𝑌(𝑥,𝑦,𝑚)

Proof of Theorem ruclem2
StepHypRef Expression
1 ruclem1.3 . . . . 5 (𝜑𝐴 ∈ ℝ)
21leidd 11204 . . . 4 (𝜑𝐴𝐴)
3 ruclem1.4 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
41, 3readdcld 10668 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
54rehalfcld 11881 . . . . . . 7 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
65, 3readdcld 10668 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) / 2) + 𝐵) ∈ ℝ)
76rehalfcld 11881 . . . . 5 (𝜑 → ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ ℝ)
8 ruclem2.8 . . . . . . 7 (𝜑𝐴 < 𝐵)
9 avglt1 11872 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
101, 3, 9syl2anc 587 . . . . . . 7 (𝜑 → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
118, 10mpbid 235 . . . . . 6 (𝜑𝐴 < ((𝐴 + 𝐵) / 2))
12 avglt2 11873 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
131, 3, 12syl2anc 587 . . . . . . . 8 (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
148, 13mpbid 235 . . . . . . 7 (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵)
15 avglt1 11872 . . . . . . . 8 ((((𝐴 + 𝐵) / 2) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
165, 3, 15syl2anc 587 . . . . . . 7 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
1714, 16mpbid 235 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
181, 5, 7, 11, 17lttrd 10799 . . . . 5 (𝜑𝐴 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
191, 7, 18ltled 10786 . . . 4 (𝜑𝐴 ≤ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
20 breq2 5056 . . . . 5 (𝐴 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → (𝐴𝐴𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))))
21 breq2 5056 . . . . 5 (((((𝐴 + 𝐵) / 2) + 𝐵) / 2) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → (𝐴 ≤ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ↔ 𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))))
2220, 21ifboth 4488 . . . 4 ((𝐴𝐴𝐴 ≤ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → 𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
232, 19, 22syl2anc 587 . . 3 (𝜑𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
24 ruc.1 . . . . 5 (𝜑𝐹:ℕ⟶ℝ)
25 ruc.2 . . . . 5 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
26 ruclem1.5 . . . . 5 (𝜑𝑀 ∈ ℝ)
27 ruclem1.6 . . . . 5 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
28 ruclem1.7 . . . . 5 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
2924, 25, 1, 3, 26, 27, 28ruclem1 15584 . . . 4 (𝜑 → ((⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
3029simp2d 1140 . . 3 (𝜑𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
3123, 30breqtrrd 5080 . 2 (𝜑𝐴𝑋)
32 iftrue 4456 . . . . . 6 (((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) = 𝐴)
33 iftrue 4456 . . . . . 6 (((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) = ((𝐴 + 𝐵) / 2))
3432, 33breq12d 5065 . . . . 5 (((𝐴 + 𝐵) / 2) < 𝑀 → (if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ↔ 𝐴 < ((𝐴 + 𝐵) / 2)))
3511, 34syl5ibrcom 250 . . . 4 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
36 avglt2 11873 . . . . . . 7 ((((𝐴 + 𝐵) / 2) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵))
375, 3, 36syl2anc 587 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵))
3814, 37mpbid 235 . . . . 5 (𝜑 → ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵)
39 iffalse 4459 . . . . . 6 (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
40 iffalse 4459 . . . . . 6 (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) = 𝐵)
4139, 40breq12d 5065 . . . . 5 (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → (if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ↔ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵))
4238, 41syl5ibrcom 250 . . . 4 (𝜑 → (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
4335, 42pm2.61d 182 . . 3 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
4429simp3d 1141 . . 3 (𝜑𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
4543, 30, 443brtr4d 5084 . 2 (𝜑𝑋 < 𝑌)
465, 3, 14ltled 10786 . . . 4 (𝜑 → ((𝐴 + 𝐵) / 2) ≤ 𝐵)
473leidd 11204 . . . 4 (𝜑𝐵𝐵)
48 breq1 5055 . . . . 5 (((𝐴 + 𝐵) / 2) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) → (((𝐴 + 𝐵) / 2) ≤ 𝐵 ↔ if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵))
49 breq1 5055 . . . . 5 (𝐵 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) → (𝐵𝐵 ↔ if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵))
5048, 49ifboth 4488 . . . 4 ((((𝐴 + 𝐵) / 2) ≤ 𝐵𝐵𝐵) → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵)
5146, 47, 50syl2anc 587 . . 3 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵)
5244, 51eqbrtrd 5074 . 2 (𝜑𝑌𝐵)
5331, 45, 523jca 1125 1 (𝜑 → (𝐴𝑋𝑋 < 𝑌𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2115  csb 3866  ifcif 4450  cop 4556   class class class wbr 5052   × cxp 5540  wf 6339  cfv 6343  (class class class)co 7149  cmpo 7151  1st c1st 7682  2nd c2nd 7683  cr 10534   + caddc 10538   < clt 10673  cle 10674   / cdiv 11295  cn 11634  2c2 11689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-po 5461  df-so 5462  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7684  df-2nd 7685  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-2 11697
This theorem is referenced by:  ruclem8  15590  ruclem9  15591
  Copyright terms: Public domain W3C validator