MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2monolem3 Structured version   Visualization version   GIF version

Theorem itg2monolem3 25252
Description: Lemma for itg2mono 25253. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
itg2mono.1 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
itg2mono.2 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
itg2mono.3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
itg2mono.4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
itg2mono.5 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
itg2mono.6 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
itg2monolem2.7 (𝜑𝑃 ∈ dom ∫1)
itg2monolem2.8 (𝜑𝑃r𝐺)
itg2monolem2.9 (𝜑 → ¬ (∫1𝑃) ≤ 𝑆)
Assertion
Ref Expression
itg2monolem3 (𝜑 → (∫1𝑃) ≤ 𝑆)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐺   𝑃,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦

Proof of Theorem itg2monolem3
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 itg2mono.1 . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
2 itg2mono.2 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
3 itg2mono.3 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
4 itg2mono.4 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
5 itg2mono.5 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
6 itg2mono.6 . . . . . . . . . 10 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
7 itg2monolem2.7 . . . . . . . . . 10 (𝜑𝑃 ∈ dom ∫1)
8 itg2monolem2.8 . . . . . . . . . 10 (𝜑𝑃r𝐺)
9 itg2monolem2.9 . . . . . . . . . 10 (𝜑 → ¬ (∫1𝑃) ≤ 𝑆)
101, 2, 3, 4, 5, 6, 7, 8, 9itg2monolem2 25251 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ)
1110adantr 482 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → 𝑆 ∈ ℝ)
1211recnd 11238 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → 𝑆 ∈ ℂ)
137adantr 482 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑃 ∈ dom ∫1)
14 itg1cl 25184 . . . . . . . . 9 (𝑃 ∈ dom ∫1 → (∫1𝑃) ∈ ℝ)
1513, 14syl 17 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (∫1𝑃) ∈ ℝ)
1615recnd 11238 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (∫1𝑃) ∈ ℂ)
17 simpr 486 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 𝑡 ∈ ℝ+)
1817rpred 13012 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑡 ∈ ℝ)
1911, 18readdcld 11239 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑆 + 𝑡) ∈ ℝ)
2019recnd 11238 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (𝑆 + 𝑡) ∈ ℂ)
21 0red 11213 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 ∈ ℝ)
22 0xr 11257 . . . . . . . . . . . 12 0 ∈ ℝ*
2322a1i 11 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ*)
24 fveq2 6888 . . . . . . . . . . . . . 14 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
2524feq1d 6699 . . . . . . . . . . . . 13 (𝑛 = 1 → ((𝐹𝑛):ℝ⟶(0[,]+∞) ↔ (𝐹‘1):ℝ⟶(0[,]+∞)))
26 icossicc 13409 . . . . . . . . . . . . . . 15 (0[,)+∞) ⊆ (0[,]+∞)
27 fss 6731 . . . . . . . . . . . . . . 15 (((𝐹𝑛):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝐹𝑛):ℝ⟶(0[,]+∞))
283, 26, 27sylancl 587 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,]+∞))
2928ralrimiva 3147 . . . . . . . . . . . . 13 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛):ℝ⟶(0[,]+∞))
30 1nn 12219 . . . . . . . . . . . . . 14 1 ∈ ℕ
3130a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℕ)
3225, 29, 31rspcdva 3613 . . . . . . . . . . . 12 (𝜑 → (𝐹‘1):ℝ⟶(0[,]+∞))
33 itg2cl 25232 . . . . . . . . . . . 12 ((𝐹‘1):ℝ⟶(0[,]+∞) → (∫2‘(𝐹‘1)) ∈ ℝ*)
3432, 33syl 17 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝐹‘1)) ∈ ℝ*)
35 itg2cl 25232 . . . . . . . . . . . . . . . 16 ((𝐹𝑛):ℝ⟶(0[,]+∞) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
3628, 35syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
3736fmpttd 7110 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))):ℕ⟶ℝ*)
3837frnd 6722 . . . . . . . . . . . . 13 (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ*)
39 supxrcl 13290 . . . . . . . . . . . . 13 (ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
4038, 39syl 17 . . . . . . . . . . . 12 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
416, 40eqeltrid 2838 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ*)
42 itg2ge0 25235 . . . . . . . . . . . 12 ((𝐹‘1):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝐹‘1)))
4332, 42syl 17 . . . . . . . . . . 11 (𝜑 → 0 ≤ (∫2‘(𝐹‘1)))
44 2fveq3 6893 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (∫2‘(𝐹𝑛)) = (∫2‘(𝐹‘1)))
45 eqid 2733 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))
46 fvex 6901 . . . . . . . . . . . . . . . 16 (∫2‘(𝐹‘1)) ∈ V
4744, 45, 46fvmpt 6994 . . . . . . . . . . . . . . 15 (1 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) = (∫2‘(𝐹‘1)))
4830, 47ax-mp 5 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) = (∫2‘(𝐹‘1))
4937ffnd 6715 . . . . . . . . . . . . . . 15 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ)
50 fnfvelrn 7078 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ ∧ 1 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
5149, 30, 50sylancl 587 . . . . . . . . . . . . . 14 (𝜑 → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
5248, 51eqeltrrid 2839 . . . . . . . . . . . . 13 (𝜑 → (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
53 supxrub 13299 . . . . . . . . . . . . 13 ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))) → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ))
5438, 52, 53syl2anc 585 . . . . . . . . . . . 12 (𝜑 → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ))
5554, 6breqtrrdi 5189 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝐹‘1)) ≤ 𝑆)
5623, 34, 41, 43, 55xrletrd 13137 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑆)
5756adantr 482 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 ≤ 𝑆)
5811, 17ltaddrpd 13045 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑆 < (𝑆 + 𝑡))
5921, 11, 19, 57, 58lelttrd 11368 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → 0 < (𝑆 + 𝑡))
6059gt0ne0d 11774 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (𝑆 + 𝑡) ≠ 0)
6112, 16, 20, 60div23d 12023 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) = ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)))
6211, 19, 60redivcld 12038 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑆 / (𝑆 + 𝑡)) ∈ ℝ)
6362, 15remulcld 11240 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ∈ ℝ)
64 halfre 12422 . . . . . . . . 9 (1 / 2) ∈ ℝ
65 ifcl 4572 . . . . . . . . 9 (((𝑆 / (𝑆 + 𝑡)) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ)
6662, 64, 65sylancl 587 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ)
6766, 15remulcld 11240 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)) ∈ ℝ)
68 max2 13162 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ (𝑆 / (𝑆 + 𝑡)) ∈ ℝ) → (𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
6964, 62, 68sylancr 588 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
707, 14syl 17 . . . . . . . . . . . . . 14 (𝜑 → (∫1𝑃) ∈ ℝ)
7170rexrd 11260 . . . . . . . . . . . . 13 (𝜑 → (∫1𝑃) ∈ ℝ*)
72 xrltnle 11277 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ* ∧ (∫1𝑃) ∈ ℝ*) → (𝑆 < (∫1𝑃) ↔ ¬ (∫1𝑃) ≤ 𝑆))
7341, 71, 72syl2anc 585 . . . . . . . . . . . 12 (𝜑 → (𝑆 < (∫1𝑃) ↔ ¬ (∫1𝑃) ≤ 𝑆))
749, 73mpbird 257 . . . . . . . . . . 11 (𝜑𝑆 < (∫1𝑃))
7574adantr 482 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 𝑆 < (∫1𝑃))
7621, 11, 15, 57, 75lelttrd 11368 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 < (∫1𝑃))
77 lemul1 12062 . . . . . . . . 9 (((𝑆 / (𝑆 + 𝑡)) ∈ ℝ ∧ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ ∧ ((∫1𝑃) ∈ ℝ ∧ 0 < (∫1𝑃))) → ((𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ↔ ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃))))
7862, 66, 15, 76, 77syl112anc 1375 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ↔ ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃))))
7969, 78mpbid 231 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)))
802adantlr 714 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
813adantlr 714 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
824adantlr 714 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
835adantlr 714 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
8464a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → (1 / 2) ∈ ℝ)
85 halfgt0 12424 . . . . . . . . . . 11 0 < (1 / 2)
8685a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 0 < (1 / 2))
87 max1 13160 . . . . . . . . . . 11 (((1 / 2) ∈ ℝ ∧ (𝑆 / (𝑆 + 𝑡)) ∈ ℝ) → (1 / 2) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
8864, 62, 87sylancr 588 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → (1 / 2) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
8921, 84, 66, 86, 88ltletrd 11370 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 < if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
9020mulridd 11227 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 + 𝑡) · 1) = (𝑆 + 𝑡))
9158, 90breqtrrd 5175 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → 𝑆 < ((𝑆 + 𝑡) · 1))
92 1red 11211 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ+) → 1 ∈ ℝ)
93 ltdivmul 12085 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑆 + 𝑡) ∈ ℝ ∧ 0 < (𝑆 + 𝑡))) → ((𝑆 / (𝑆 + 𝑡)) < 1 ↔ 𝑆 < ((𝑆 + 𝑡) · 1)))
9411, 92, 19, 59, 93syl112anc 1375 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) < 1 ↔ 𝑆 < ((𝑆 + 𝑡) · 1)))
9591, 94mpbird 257 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → (𝑆 / (𝑆 + 𝑡)) < 1)
96 halflt1 12426 . . . . . . . . . 10 (1 / 2) < 1
97 breq1 5150 . . . . . . . . . . 11 ((𝑆 / (𝑆 + 𝑡)) = if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) → ((𝑆 / (𝑆 + 𝑡)) < 1 ↔ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1))
98 breq1 5150 . . . . . . . . . . 11 ((1 / 2) = if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) → ((1 / 2) < 1 ↔ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1))
9997, 98ifboth 4566 . . . . . . . . . 10 (((𝑆 / (𝑆 + 𝑡)) < 1 ∧ (1 / 2) < 1) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1)
10095, 96, 99sylancl 587 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1)
101 1xr 11269 . . . . . . . . . 10 1 ∈ ℝ*
102 elioo2 13361 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ (0(,)1) ↔ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ ∧ 0 < if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∧ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1)))
10322, 101, 102mp2an 691 . . . . . . . . 9 (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ (0(,)1) ↔ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ ∧ 0 < if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∧ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1))
10466, 89, 100, 103syl3anbrc 1344 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ (0(,)1))
1058adantr 482 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → 𝑃r𝐺)
106 fveq2 6888 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑃𝑦) = (𝑃𝑥))
107106oveq2d 7420 . . . . . . . . . . 11 (𝑦 = 𝑥 → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) = (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)))
108 fveq2 6888 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝐹𝑛)‘𝑦) = ((𝐹𝑛)‘𝑥))
109107, 108breq12d 5160 . . . . . . . . . 10 (𝑦 = 𝑥 → ((if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) ≤ ((𝐹𝑛)‘𝑦) ↔ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)) ≤ ((𝐹𝑛)‘𝑥)))
110109cbvrabv 3443 . . . . . . . . 9 {𝑦 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) ≤ ((𝐹𝑛)‘𝑦)} = {𝑥 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)) ≤ ((𝐹𝑛)‘𝑥)}
111110mpteq2i 5252 . . . . . . . 8 (𝑛 ∈ ℕ ↦ {𝑦 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) ≤ ((𝐹𝑛)‘𝑦)}) = (𝑛 ∈ ℕ ↦ {𝑥 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)) ≤ ((𝐹𝑛)‘𝑥)})
1121, 80, 81, 82, 83, 6, 104, 13, 105, 11, 111itg2monolem1 25250 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)) ≤ 𝑆)
11363, 67, 11, 79, 112letrd 11367 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ 𝑆)
11461, 113eqbrtrd 5169 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) ≤ 𝑆)
11511, 15remulcld 11240 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → (𝑆 · (∫1𝑃)) ∈ ℝ)
116 ledivmul2 12089 . . . . . 6 (((𝑆 · (∫1𝑃)) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ((𝑆 + 𝑡) ∈ ℝ ∧ 0 < (𝑆 + 𝑡))) → (((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) ≤ 𝑆 ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
117115, 11, 19, 59, 116syl112anc 1375 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → (((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) ≤ 𝑆 ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
118114, 117mpbid 231 . . . 4 ((𝜑𝑡 ∈ ℝ+) → (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡)))
11966, 15, 89, 76mulgt0d 11365 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → 0 < (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)))
12021, 67, 11, 119, 112ltletrd 11370 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → 0 < 𝑆)
121 lemul2 12063 . . . . 5 (((∫1𝑃) ∈ ℝ ∧ (𝑆 + 𝑡) ∈ ℝ ∧ (𝑆 ∈ ℝ ∧ 0 < 𝑆)) → ((∫1𝑃) ≤ (𝑆 + 𝑡) ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
12215, 19, 11, 120, 121syl112anc 1375 . . . 4 ((𝜑𝑡 ∈ ℝ+) → ((∫1𝑃) ≤ (𝑆 + 𝑡) ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
123118, 122mpbird 257 . . 3 ((𝜑𝑡 ∈ ℝ+) → (∫1𝑃) ≤ (𝑆 + 𝑡))
124123ralrimiva 3147 . 2 (𝜑 → ∀𝑡 ∈ ℝ+ (∫1𝑃) ≤ (𝑆 + 𝑡))
125 alrple 13181 . . 3 (((∫1𝑃) ∈ ℝ ∧ 𝑆 ∈ ℝ) → ((∫1𝑃) ≤ 𝑆 ↔ ∀𝑡 ∈ ℝ+ (∫1𝑃) ≤ (𝑆 + 𝑡)))
12670, 10, 125syl2anc 585 . 2 (𝜑 → ((∫1𝑃) ≤ 𝑆 ↔ ∀𝑡 ∈ ℝ+ (∫1𝑃) ≤ (𝑆 + 𝑡)))
127124, 126mpbird 257 1 (𝜑 → (∫1𝑃) ≤ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wrex 3071  {crab 3433  wss 3947  ifcif 4527   class class class wbr 5147  cmpt 5230  dom cdm 5675  ran crn 5676   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7404  r cofr 7664  supcsup 9431  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111  +∞cpnf 11241  *cxr 11243   < clt 11244  cle 11245   / cdiv 11867  cn 12208  2c2 12263  +crp 12970  (,)cioo 13320  [,)cico 13322  [,]cicc 13323  MblFncmbf 25113  1citg1 25114  2citg2 25115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632  ax-cc 10426  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-ofr 7666  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-omul 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-acn 9933  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-rlim 15429  df-sum 15629  df-rest 17364  df-topgen 17385  df-psmet 20921  df-xmet 20922  df-met 20923  df-bl 20924  df-mopn 20925  df-top 22378  df-topon 22395  df-bases 22431  df-cmp 22873  df-ovol 24963  df-vol 24964  df-mbf 25118  df-itg1 25119  df-itg2 25120
This theorem is referenced by:  itg2mono  25253
  Copyright terms: Public domain W3C validator