| Step | Hyp | Ref
| Expression |
| 1 | | itg2mono.1 |
. . . . . . . . . 10
⊢ 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
| 2 | | itg2mono.2 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) |
| 3 | | itg2mono.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) |
| 4 | | itg2mono.4 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) |
| 5 | | itg2mono.5 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) |
| 6 | | itg2mono.6 |
. . . . . . . . . 10
⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ*, <
) |
| 7 | | itg2monolem2.7 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ dom
∫1) |
| 8 | | itg2monolem2.8 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∘r ≤ 𝐺) |
| 9 | | itg2monolem2.9 |
. . . . . . . . . 10
⊢ (𝜑 → ¬
(∫1‘𝑃)
≤ 𝑆) |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | itg2monolem2 25786 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ ℝ) |
| 11 | 10 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝑆 ∈
ℝ) |
| 12 | 11 | recnd 11289 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝑆 ∈
ℂ) |
| 13 | 7 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝑃 ∈ dom
∫1) |
| 14 | | itg1cl 25720 |
. . . . . . . . 9
⊢ (𝑃 ∈ dom ∫1
→ (∫1‘𝑃) ∈ ℝ) |
| 15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
(∫1‘𝑃)
∈ ℝ) |
| 16 | 15 | recnd 11289 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
(∫1‘𝑃)
∈ ℂ) |
| 17 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝑡 ∈
ℝ+) |
| 18 | 17 | rpred 13077 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝑡 ∈
ℝ) |
| 19 | 11, 18 | readdcld 11290 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝑆 + 𝑡) ∈ ℝ) |
| 20 | 19 | recnd 11289 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝑆 + 𝑡) ∈ ℂ) |
| 21 | | 0red 11264 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 0 ∈
ℝ) |
| 22 | | 0xr 11308 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ* |
| 23 | 22 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈
ℝ*) |
| 24 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 1 → (𝐹‘𝑛) = (𝐹‘1)) |
| 25 | 24 | feq1d 6720 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 1 → ((𝐹‘𝑛):ℝ⟶(0[,]+∞) ↔ (𝐹‘1):ℝ⟶(0[,]+∞))) |
| 26 | | icossicc 13476 |
. . . . . . . . . . . . . . 15
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
| 27 | | fss 6752 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑛):ℝ⟶(0[,)+∞) ∧
(0[,)+∞) ⊆ (0[,]+∞)) → (𝐹‘𝑛):ℝ⟶(0[,]+∞)) |
| 28 | 3, 26, 27 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,]+∞)) |
| 29 | 28 | ralrimiva 3146 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐹‘𝑛):ℝ⟶(0[,]+∞)) |
| 30 | | 1nn 12277 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℕ |
| 31 | 30 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈
ℕ) |
| 32 | 25, 29, 31 | rspcdva 3623 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹‘1):ℝ⟶(0[,]+∞)) |
| 33 | | itg2cl 25767 |
. . . . . . . . . . . 12
⊢ ((𝐹‘1):ℝ⟶(0[,]+∞)
→ (∫2‘(𝐹‘1)) ∈
ℝ*) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 →
(∫2‘(𝐹‘1)) ∈
ℝ*) |
| 35 | | itg2cl 25767 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑛):ℝ⟶(0[,]+∞) →
(∫2‘(𝐹‘𝑛)) ∈
ℝ*) |
| 36 | 28, 35 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(∫2‘(𝐹‘𝑛)) ∈
ℝ*) |
| 37 | 36 | fmpttd 7135 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))):ℕ⟶ℝ*) |
| 38 | 37 | frnd 6744 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ⊆
ℝ*) |
| 39 | | supxrcl 13357 |
. . . . . . . . . . . . 13
⊢ (ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ⊆ ℝ* →
sup(ran (𝑛 ∈ ℕ
↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) ∈
ℝ*) |
| 40 | 38, 39 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ*, < ) ∈
ℝ*) |
| 41 | 6, 40 | eqeltrid 2845 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈
ℝ*) |
| 42 | | itg2ge0 25770 |
. . . . . . . . . . . 12
⊢ ((𝐹‘1):ℝ⟶(0[,]+∞)
→ 0 ≤ (∫2‘(𝐹‘1))) |
| 43 | 32, 42 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤
(∫2‘(𝐹‘1))) |
| 44 | | 2fveq3 6911 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 1 →
(∫2‘(𝐹‘𝑛)) = (∫2‘(𝐹‘1))) |
| 45 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) = (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) |
| 46 | | fvex 6919 |
. . . . . . . . . . . . . . . 16
⊢
(∫2‘(𝐹‘1)) ∈ V |
| 47 | 44, 45, 46 | fvmpt 7016 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
ℕ → ((𝑛 ∈
ℕ ↦ (∫2‘(𝐹‘𝑛)))‘1) =
(∫2‘(𝐹‘1))) |
| 48 | 30, 47 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘1) =
(∫2‘(𝐹‘1)) |
| 49 | 37 | ffnd 6737 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) Fn ℕ) |
| 50 | | fnfvelrn 7100 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) Fn ℕ ∧ 1 ∈ ℕ) →
((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))) |
| 51 | 49, 30, 50 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))) |
| 52 | 48, 51 | eqeltrrid 2846 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))) |
| 53 | | supxrub 13366 |
. . . . . . . . . . . . 13
⊢ ((ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ⊆ ℝ* ∧
(∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))) → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ*, <
)) |
| 54 | 38, 52, 53 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ*, <
)) |
| 55 | 54, 6 | breqtrrdi 5185 |
. . . . . . . . . . 11
⊢ (𝜑 →
(∫2‘(𝐹‘1)) ≤ 𝑆) |
| 56 | 23, 34, 41, 43, 55 | xrletrd 13204 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ 𝑆) |
| 57 | 56 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 0 ≤
𝑆) |
| 58 | 11, 17 | ltaddrpd 13110 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝑆 < (𝑆 + 𝑡)) |
| 59 | 21, 11, 19, 57, 58 | lelttrd 11419 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 0 <
(𝑆 + 𝑡)) |
| 60 | 59 | gt0ne0d 11827 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝑆 + 𝑡) ≠ 0) |
| 61 | 12, 16, 20, 60 | div23d 12080 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → ((𝑆 ·
(∫1‘𝑃)) / (𝑆 + 𝑡)) = ((𝑆 / (𝑆 + 𝑡)) · (∫1‘𝑃))) |
| 62 | 11, 19, 60 | redivcld 12095 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝑆 / (𝑆 + 𝑡)) ∈ ℝ) |
| 63 | 62, 15 | remulcld 11291 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) · (∫1‘𝑃)) ∈
ℝ) |
| 64 | | halfre 12480 |
. . . . . . . . 9
⊢ (1 / 2)
∈ ℝ |
| 65 | | ifcl 4571 |
. . . . . . . . 9
⊢ (((𝑆 / (𝑆 + 𝑡)) ∈ ℝ ∧ (1 / 2) ∈
ℝ) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ) |
| 66 | 62, 64, 65 | sylancl 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → if((1 /
2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ) |
| 67 | 66, 15 | remulcld 11291 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (if((1 /
2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ·
(∫1‘𝑃)) ∈ ℝ) |
| 68 | | max2 13229 |
. . . . . . . . 9
⊢ (((1 / 2)
∈ ℝ ∧ (𝑆 /
(𝑆 + 𝑡)) ∈ ℝ) → (𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2))) |
| 69 | 64, 62, 68 | sylancr 587 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2))) |
| 70 | 7, 14 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(∫1‘𝑃)
∈ ℝ) |
| 71 | 70 | rexrd 11311 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(∫1‘𝑃)
∈ ℝ*) |
| 72 | | xrltnle 11328 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ ℝ*
∧ (∫1‘𝑃) ∈ ℝ*) → (𝑆 <
(∫1‘𝑃)
↔ ¬ (∫1‘𝑃) ≤ 𝑆)) |
| 73 | 41, 71, 72 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆 < (∫1‘𝑃) ↔ ¬
(∫1‘𝑃)
≤ 𝑆)) |
| 74 | 9, 73 | mpbird 257 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 < (∫1‘𝑃)) |
| 75 | 74 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝑆 <
(∫1‘𝑃)) |
| 76 | 21, 11, 15, 57, 75 | lelttrd 11419 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 0 <
(∫1‘𝑃)) |
| 77 | | lemul1 12119 |
. . . . . . . . 9
⊢ (((𝑆 / (𝑆 + 𝑡)) ∈ ℝ ∧ if((1 / 2) ≤
(𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ ∧
((∫1‘𝑃) ∈ ℝ ∧ 0 <
(∫1‘𝑃))) → ((𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ↔ ((𝑆 / (𝑆 + 𝑡)) · (∫1‘𝑃)) ≤ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ·
(∫1‘𝑃)))) |
| 78 | 62, 66, 15, 76, 77 | syl112anc 1376 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ↔ ((𝑆 / (𝑆 + 𝑡)) · (∫1‘𝑃)) ≤ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ·
(∫1‘𝑃)))) |
| 79 | 69, 78 | mpbid 232 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) · (∫1‘𝑃)) ≤ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ·
(∫1‘𝑃))) |
| 80 | 2 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) |
| 81 | 3 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) |
| 82 | 4 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) |
| 83 | 5 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) →
∃𝑦 ∈ ℝ
∀𝑛 ∈ ℕ
((𝐹‘𝑛)‘𝑥) ≤ 𝑦) |
| 84 | 64 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (1 / 2)
∈ ℝ) |
| 85 | | halfgt0 12482 |
. . . . . . . . . . 11
⊢ 0 < (1
/ 2) |
| 86 | 85 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 0 < (1
/ 2)) |
| 87 | | max1 13227 |
. . . . . . . . . . 11
⊢ (((1 / 2)
∈ ℝ ∧ (𝑆 /
(𝑆 + 𝑡)) ∈ ℝ) → (1 / 2) ≤ if((1
/ 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2))) |
| 88 | 64, 62, 87 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (1 / 2)
≤ if((1 / 2) ≤ (𝑆 /
(𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2))) |
| 89 | 21, 84, 66, 86, 88 | ltletrd 11421 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 0 <
if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2))) |
| 90 | 20 | mulridd 11278 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → ((𝑆 + 𝑡) · 1) = (𝑆 + 𝑡)) |
| 91 | 58, 90 | breqtrrd 5171 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝑆 < ((𝑆 + 𝑡) · 1)) |
| 92 | | 1red 11262 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 1 ∈
ℝ) |
| 93 | | ltdivmul 12143 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ ℝ ∧ 1 ∈
ℝ ∧ ((𝑆 + 𝑡) ∈ ℝ ∧ 0 <
(𝑆 + 𝑡))) → ((𝑆 / (𝑆 + 𝑡)) < 1 ↔ 𝑆 < ((𝑆 + 𝑡) · 1))) |
| 94 | 11, 92, 19, 59, 93 | syl112anc 1376 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) < 1 ↔ 𝑆 < ((𝑆 + 𝑡) · 1))) |
| 95 | 91, 94 | mpbird 257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝑆 / (𝑆 + 𝑡)) < 1) |
| 96 | | halflt1 12484 |
. . . . . . . . . 10
⊢ (1 / 2)
< 1 |
| 97 | | breq1 5146 |
. . . . . . . . . . 11
⊢ ((𝑆 / (𝑆 + 𝑡)) = if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) → ((𝑆 / (𝑆 + 𝑡)) < 1 ↔ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1)) |
| 98 | | breq1 5146 |
. . . . . . . . . . 11
⊢ ((1 / 2)
= if((1 / 2) ≤ (𝑆 /
(𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) → ((1 / 2) < 1 ↔
if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1)) |
| 99 | 97, 98 | ifboth 4565 |
. . . . . . . . . 10
⊢ (((𝑆 / (𝑆 + 𝑡)) < 1 ∧ (1 / 2) < 1) → if((1
/ 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1) |
| 100 | 95, 96, 99 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → if((1 /
2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1) |
| 101 | | 1xr 11320 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ* |
| 102 | | elioo2 13428 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ*) → (if((1 /
2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ (0(,)1) ↔ (if((1 /
2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ ∧ 0 <
if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∧ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1))) |
| 103 | 22, 101, 102 | mp2an 692 |
. . . . . . . . 9
⊢ (if((1 /
2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ (0(,)1) ↔ (if((1 /
2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ ∧ 0 <
if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∧ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1)) |
| 104 | 66, 89, 100, 103 | syl3anbrc 1344 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → if((1 /
2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ (0(,)1)) |
| 105 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝑃 ∘r ≤ 𝐺) |
| 106 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (𝑃‘𝑦) = (𝑃‘𝑥)) |
| 107 | 106 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃‘𝑦)) = (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃‘𝑥))) |
| 108 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → ((𝐹‘𝑛)‘𝑦) = ((𝐹‘𝑛)‘𝑥)) |
| 109 | 107, 108 | breq12d 5156 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → ((if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃‘𝑦)) ≤ ((𝐹‘𝑛)‘𝑦) ↔ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥))) |
| 110 | 109 | cbvrabv 3447 |
. . . . . . . . 9
⊢ {𝑦 ∈ ℝ ∣ (if((1 /
2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃‘𝑦)) ≤ ((𝐹‘𝑛)‘𝑦)} = {𝑥 ∈ ℝ ∣ (if((1 / 2) ≤
(𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥)} |
| 111 | 110 | mpteq2i 5247 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ {𝑦 ∈ ℝ ∣ (if((1 /
2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃‘𝑦)) ≤ ((𝐹‘𝑛)‘𝑦)}) = (𝑛 ∈ ℕ ↦ {𝑥 ∈ ℝ ∣ (if((1 / 2) ≤
(𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥)}) |
| 112 | 1, 80, 81, 82, 83, 6, 104, 13, 105, 11, 111 | itg2monolem1 25785 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (if((1 /
2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ·
(∫1‘𝑃)) ≤ 𝑆) |
| 113 | 63, 67, 11, 79, 112 | letrd 11418 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) · (∫1‘𝑃)) ≤ 𝑆) |
| 114 | 61, 113 | eqbrtrd 5165 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → ((𝑆 ·
(∫1‘𝑃)) / (𝑆 + 𝑡)) ≤ 𝑆) |
| 115 | 11, 15 | remulcld 11291 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝑆 ·
(∫1‘𝑃)) ∈ ℝ) |
| 116 | | ledivmul2 12147 |
. . . . . 6
⊢ (((𝑆 ·
(∫1‘𝑃)) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ((𝑆 + 𝑡) ∈ ℝ ∧ 0 < (𝑆 + 𝑡))) → (((𝑆 · (∫1‘𝑃)) / (𝑆 + 𝑡)) ≤ 𝑆 ↔ (𝑆 · (∫1‘𝑃)) ≤ (𝑆 · (𝑆 + 𝑡)))) |
| 117 | 115, 11, 19, 59, 116 | syl112anc 1376 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (((𝑆 ·
(∫1‘𝑃)) / (𝑆 + 𝑡)) ≤ 𝑆 ↔ (𝑆 · (∫1‘𝑃)) ≤ (𝑆 · (𝑆 + 𝑡)))) |
| 118 | 114, 117 | mpbid 232 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝑆 ·
(∫1‘𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))) |
| 119 | 66, 15, 89, 76 | mulgt0d 11416 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 0 <
(if((1 / 2) ≤ (𝑆 /
(𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ·
(∫1‘𝑃))) |
| 120 | 21, 67, 11, 119, 112 | ltletrd 11421 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 0 <
𝑆) |
| 121 | | lemul2 12120 |
. . . . 5
⊢
(((∫1‘𝑃) ∈ ℝ ∧ (𝑆 + 𝑡) ∈ ℝ ∧ (𝑆 ∈ ℝ ∧ 0 < 𝑆)) →
((∫1‘𝑃) ≤ (𝑆 + 𝑡) ↔ (𝑆 · (∫1‘𝑃)) ≤ (𝑆 · (𝑆 + 𝑡)))) |
| 122 | 15, 19, 11, 120, 121 | syl112anc 1376 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
((∫1‘𝑃) ≤ (𝑆 + 𝑡) ↔ (𝑆 · (∫1‘𝑃)) ≤ (𝑆 · (𝑆 + 𝑡)))) |
| 123 | 118, 122 | mpbird 257 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
(∫1‘𝑃)
≤ (𝑆 + 𝑡)) |
| 124 | 123 | ralrimiva 3146 |
. 2
⊢ (𝜑 → ∀𝑡 ∈ ℝ+
(∫1‘𝑃)
≤ (𝑆 + 𝑡)) |
| 125 | | alrple 13248 |
. . 3
⊢
(((∫1‘𝑃) ∈ ℝ ∧ 𝑆 ∈ ℝ) →
((∫1‘𝑃) ≤ 𝑆 ↔ ∀𝑡 ∈ ℝ+
(∫1‘𝑃)
≤ (𝑆 + 𝑡))) |
| 126 | 70, 10, 125 | syl2anc 584 |
. 2
⊢ (𝜑 →
((∫1‘𝑃) ≤ 𝑆 ↔ ∀𝑡 ∈ ℝ+
(∫1‘𝑃)
≤ (𝑆 + 𝑡))) |
| 127 | 124, 126 | mpbird 257 |
1
⊢ (𝜑 →
(∫1‘𝑃)
≤ 𝑆) |