MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2monolem3 Structured version   Visualization version   GIF version

Theorem itg2monolem3 24356
Description: Lemma for itg2mono 24357. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
itg2mono.1 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
itg2mono.2 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
itg2mono.3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
itg2mono.4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
itg2mono.5 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
itg2mono.6 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
itg2monolem2.7 (𝜑𝑃 ∈ dom ∫1)
itg2monolem2.8 (𝜑𝑃r𝐺)
itg2monolem2.9 (𝜑 → ¬ (∫1𝑃) ≤ 𝑆)
Assertion
Ref Expression
itg2monolem3 (𝜑 → (∫1𝑃) ≤ 𝑆)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐺   𝑃,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦

Proof of Theorem itg2monolem3
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 itg2mono.1 . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
2 itg2mono.2 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
3 itg2mono.3 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
4 itg2mono.4 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
5 itg2mono.5 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
6 itg2mono.6 . . . . . . . . . 10 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
7 itg2monolem2.7 . . . . . . . . . 10 (𝜑𝑃 ∈ dom ∫1)
8 itg2monolem2.8 . . . . . . . . . 10 (𝜑𝑃r𝐺)
9 itg2monolem2.9 . . . . . . . . . 10 (𝜑 → ¬ (∫1𝑃) ≤ 𝑆)
101, 2, 3, 4, 5, 6, 7, 8, 9itg2monolem2 24355 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ)
1110adantr 484 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → 𝑆 ∈ ℝ)
1211recnd 10658 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → 𝑆 ∈ ℂ)
137adantr 484 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑃 ∈ dom ∫1)
14 itg1cl 24289 . . . . . . . . 9 (𝑃 ∈ dom ∫1 → (∫1𝑃) ∈ ℝ)
1513, 14syl 17 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (∫1𝑃) ∈ ℝ)
1615recnd 10658 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (∫1𝑃) ∈ ℂ)
17 simpr 488 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 𝑡 ∈ ℝ+)
1817rpred 12419 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑡 ∈ ℝ)
1911, 18readdcld 10659 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑆 + 𝑡) ∈ ℝ)
2019recnd 10658 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (𝑆 + 𝑡) ∈ ℂ)
21 0red 10633 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 ∈ ℝ)
22 0xr 10677 . . . . . . . . . . . 12 0 ∈ ℝ*
2322a1i 11 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ*)
24 fveq2 6645 . . . . . . . . . . . . . 14 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
2524feq1d 6472 . . . . . . . . . . . . 13 (𝑛 = 1 → ((𝐹𝑛):ℝ⟶(0[,]+∞) ↔ (𝐹‘1):ℝ⟶(0[,]+∞)))
26 icossicc 12814 . . . . . . . . . . . . . . 15 (0[,)+∞) ⊆ (0[,]+∞)
27 fss 6501 . . . . . . . . . . . . . . 15 (((𝐹𝑛):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝐹𝑛):ℝ⟶(0[,]+∞))
283, 26, 27sylancl 589 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,]+∞))
2928ralrimiva 3149 . . . . . . . . . . . . 13 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛):ℝ⟶(0[,]+∞))
30 1nn 11636 . . . . . . . . . . . . . 14 1 ∈ ℕ
3130a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℕ)
3225, 29, 31rspcdva 3573 . . . . . . . . . . . 12 (𝜑 → (𝐹‘1):ℝ⟶(0[,]+∞))
33 itg2cl 24336 . . . . . . . . . . . 12 ((𝐹‘1):ℝ⟶(0[,]+∞) → (∫2‘(𝐹‘1)) ∈ ℝ*)
3432, 33syl 17 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝐹‘1)) ∈ ℝ*)
35 itg2cl 24336 . . . . . . . . . . . . . . . 16 ((𝐹𝑛):ℝ⟶(0[,]+∞) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
3628, 35syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
3736fmpttd 6856 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))):ℕ⟶ℝ*)
3837frnd 6494 . . . . . . . . . . . . 13 (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ*)
39 supxrcl 12696 . . . . . . . . . . . . 13 (ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
4038, 39syl 17 . . . . . . . . . . . 12 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
416, 40eqeltrid 2894 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ*)
42 itg2ge0 24339 . . . . . . . . . . . 12 ((𝐹‘1):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝐹‘1)))
4332, 42syl 17 . . . . . . . . . . 11 (𝜑 → 0 ≤ (∫2‘(𝐹‘1)))
44 2fveq3 6650 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (∫2‘(𝐹𝑛)) = (∫2‘(𝐹‘1)))
45 eqid 2798 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))
46 fvex 6658 . . . . . . . . . . . . . . . 16 (∫2‘(𝐹‘1)) ∈ V
4744, 45, 46fvmpt 6745 . . . . . . . . . . . . . . 15 (1 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) = (∫2‘(𝐹‘1)))
4830, 47ax-mp 5 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) = (∫2‘(𝐹‘1))
4937ffnd 6488 . . . . . . . . . . . . . . 15 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ)
50 fnfvelrn 6825 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ ∧ 1 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
5149, 30, 50sylancl 589 . . . . . . . . . . . . . 14 (𝜑 → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
5248, 51eqeltrrid 2895 . . . . . . . . . . . . 13 (𝜑 → (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
53 supxrub 12705 . . . . . . . . . . . . 13 ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))) → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ))
5438, 52, 53syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ))
5554, 6breqtrrdi 5072 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝐹‘1)) ≤ 𝑆)
5623, 34, 41, 43, 55xrletrd 12543 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑆)
5756adantr 484 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 ≤ 𝑆)
5811, 17ltaddrpd 12452 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑆 < (𝑆 + 𝑡))
5921, 11, 19, 57, 58lelttrd 10787 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → 0 < (𝑆 + 𝑡))
6059gt0ne0d 11193 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (𝑆 + 𝑡) ≠ 0)
6112, 16, 20, 60div23d 11442 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) = ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)))
6211, 19, 60redivcld 11457 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑆 / (𝑆 + 𝑡)) ∈ ℝ)
6362, 15remulcld 10660 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ∈ ℝ)
64 halfre 11839 . . . . . . . . 9 (1 / 2) ∈ ℝ
65 ifcl 4469 . . . . . . . . 9 (((𝑆 / (𝑆 + 𝑡)) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ)
6662, 64, 65sylancl 589 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ)
6766, 15remulcld 10660 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)) ∈ ℝ)
68 max2 12568 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ (𝑆 / (𝑆 + 𝑡)) ∈ ℝ) → (𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
6964, 62, 68sylancr 590 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
707, 14syl 17 . . . . . . . . . . . . . 14 (𝜑 → (∫1𝑃) ∈ ℝ)
7170rexrd 10680 . . . . . . . . . . . . 13 (𝜑 → (∫1𝑃) ∈ ℝ*)
72 xrltnle 10697 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ* ∧ (∫1𝑃) ∈ ℝ*) → (𝑆 < (∫1𝑃) ↔ ¬ (∫1𝑃) ≤ 𝑆))
7341, 71, 72syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (𝑆 < (∫1𝑃) ↔ ¬ (∫1𝑃) ≤ 𝑆))
749, 73mpbird 260 . . . . . . . . . . 11 (𝜑𝑆 < (∫1𝑃))
7574adantr 484 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 𝑆 < (∫1𝑃))
7621, 11, 15, 57, 75lelttrd 10787 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 < (∫1𝑃))
77 lemul1 11481 . . . . . . . . 9 (((𝑆 / (𝑆 + 𝑡)) ∈ ℝ ∧ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ ∧ ((∫1𝑃) ∈ ℝ ∧ 0 < (∫1𝑃))) → ((𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ↔ ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃))))
7862, 66, 15, 76, 77syl112anc 1371 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ↔ ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃))))
7969, 78mpbid 235 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)))
802adantlr 714 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
813adantlr 714 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
824adantlr 714 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
835adantlr 714 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
8464a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → (1 / 2) ∈ ℝ)
85 halfgt0 11841 . . . . . . . . . . 11 0 < (1 / 2)
8685a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 0 < (1 / 2))
87 max1 12566 . . . . . . . . . . 11 (((1 / 2) ∈ ℝ ∧ (𝑆 / (𝑆 + 𝑡)) ∈ ℝ) → (1 / 2) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
8864, 62, 87sylancr 590 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → (1 / 2) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
8921, 84, 66, 86, 88ltletrd 10789 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 < if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
9020mulid1d 10647 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 + 𝑡) · 1) = (𝑆 + 𝑡))
9158, 90breqtrrd 5058 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → 𝑆 < ((𝑆 + 𝑡) · 1))
92 1red 10631 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ+) → 1 ∈ ℝ)
93 ltdivmul 11504 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑆 + 𝑡) ∈ ℝ ∧ 0 < (𝑆 + 𝑡))) → ((𝑆 / (𝑆 + 𝑡)) < 1 ↔ 𝑆 < ((𝑆 + 𝑡) · 1)))
9411, 92, 19, 59, 93syl112anc 1371 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) < 1 ↔ 𝑆 < ((𝑆 + 𝑡) · 1)))
9591, 94mpbird 260 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → (𝑆 / (𝑆 + 𝑡)) < 1)
96 halflt1 11843 . . . . . . . . . 10 (1 / 2) < 1
97 breq1 5033 . . . . . . . . . . 11 ((𝑆 / (𝑆 + 𝑡)) = if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) → ((𝑆 / (𝑆 + 𝑡)) < 1 ↔ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1))
98 breq1 5033 . . . . . . . . . . 11 ((1 / 2) = if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) → ((1 / 2) < 1 ↔ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1))
9997, 98ifboth 4463 . . . . . . . . . 10 (((𝑆 / (𝑆 + 𝑡)) < 1 ∧ (1 / 2) < 1) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1)
10095, 96, 99sylancl 589 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1)
101 1xr 10689 . . . . . . . . . 10 1 ∈ ℝ*
102 elioo2 12767 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ (0(,)1) ↔ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ ∧ 0 < if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∧ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1)))
10322, 101, 102mp2an 691 . . . . . . . . 9 (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ (0(,)1) ↔ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ ∧ 0 < if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∧ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1))
10466, 89, 100, 103syl3anbrc 1340 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ (0(,)1))
1058adantr 484 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → 𝑃r𝐺)
106 fveq2 6645 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑃𝑦) = (𝑃𝑥))
107106oveq2d 7151 . . . . . . . . . . 11 (𝑦 = 𝑥 → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) = (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)))
108 fveq2 6645 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝐹𝑛)‘𝑦) = ((𝐹𝑛)‘𝑥))
109107, 108breq12d 5043 . . . . . . . . . 10 (𝑦 = 𝑥 → ((if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) ≤ ((𝐹𝑛)‘𝑦) ↔ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)) ≤ ((𝐹𝑛)‘𝑥)))
110109cbvrabv 3439 . . . . . . . . 9 {𝑦 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) ≤ ((𝐹𝑛)‘𝑦)} = {𝑥 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)) ≤ ((𝐹𝑛)‘𝑥)}
111110mpteq2i 5122 . . . . . . . 8 (𝑛 ∈ ℕ ↦ {𝑦 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) ≤ ((𝐹𝑛)‘𝑦)}) = (𝑛 ∈ ℕ ↦ {𝑥 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)) ≤ ((𝐹𝑛)‘𝑥)})
1121, 80, 81, 82, 83, 6, 104, 13, 105, 11, 111itg2monolem1 24354 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)) ≤ 𝑆)
11363, 67, 11, 79, 112letrd 10786 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ 𝑆)
11461, 113eqbrtrd 5052 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) ≤ 𝑆)
11511, 15remulcld 10660 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → (𝑆 · (∫1𝑃)) ∈ ℝ)
116 ledivmul2 11508 . . . . . 6 (((𝑆 · (∫1𝑃)) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ((𝑆 + 𝑡) ∈ ℝ ∧ 0 < (𝑆 + 𝑡))) → (((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) ≤ 𝑆 ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
117115, 11, 19, 59, 116syl112anc 1371 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → (((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) ≤ 𝑆 ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
118114, 117mpbid 235 . . . 4 ((𝜑𝑡 ∈ ℝ+) → (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡)))
11966, 15, 89, 76mulgt0d 10784 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → 0 < (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)))
12021, 67, 11, 119, 112ltletrd 10789 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → 0 < 𝑆)
121 lemul2 11482 . . . . 5 (((∫1𝑃) ∈ ℝ ∧ (𝑆 + 𝑡) ∈ ℝ ∧ (𝑆 ∈ ℝ ∧ 0 < 𝑆)) → ((∫1𝑃) ≤ (𝑆 + 𝑡) ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
12215, 19, 11, 120, 121syl112anc 1371 . . . 4 ((𝜑𝑡 ∈ ℝ+) → ((∫1𝑃) ≤ (𝑆 + 𝑡) ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
123118, 122mpbird 260 . . 3 ((𝜑𝑡 ∈ ℝ+) → (∫1𝑃) ≤ (𝑆 + 𝑡))
124123ralrimiva 3149 . 2 (𝜑 → ∀𝑡 ∈ ℝ+ (∫1𝑃) ≤ (𝑆 + 𝑡))
125 alrple 12587 . . 3 (((∫1𝑃) ∈ ℝ ∧ 𝑆 ∈ ℝ) → ((∫1𝑃) ≤ 𝑆 ↔ ∀𝑡 ∈ ℝ+ (∫1𝑃) ≤ (𝑆 + 𝑡)))
12670, 10, 125syl2anc 587 . 2 (𝜑 → ((∫1𝑃) ≤ 𝑆 ↔ ∀𝑡 ∈ ℝ+ (∫1𝑃) ≤ (𝑆 + 𝑡)))
127124, 126mpbird 260 1 (𝜑 → (∫1𝑃) ≤ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  {crab 3110  wss 3881  ifcif 4425   class class class wbr 5030  cmpt 5110  dom cdm 5519  ran crn 5520   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  r cofr 7388  supcsup 8888  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665   / cdiv 11286  cn 11625  2c2 11680  +crp 12377  (,)cioo 12726  [,)cico 12728  [,]cicc 12729  MblFncmbf 24218  1citg1 24219  2citg2 24220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-rest 16688  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-cmp 21992  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225
This theorem is referenced by:  itg2mono  24357
  Copyright terms: Public domain W3C validator