MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2monolem3 Structured version   Visualization version   GIF version

Theorem itg2monolem3 25660
Description: Lemma for itg2mono 25661. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
itg2mono.1 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
itg2mono.2 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
itg2mono.3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
itg2mono.4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
itg2mono.5 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
itg2mono.6 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
itg2monolem2.7 (𝜑𝑃 ∈ dom ∫1)
itg2monolem2.8 (𝜑𝑃r𝐺)
itg2monolem2.9 (𝜑 → ¬ (∫1𝑃) ≤ 𝑆)
Assertion
Ref Expression
itg2monolem3 (𝜑 → (∫1𝑃) ≤ 𝑆)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐺   𝑃,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦

Proof of Theorem itg2monolem3
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 itg2mono.1 . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
2 itg2mono.2 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
3 itg2mono.3 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
4 itg2mono.4 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
5 itg2mono.5 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
6 itg2mono.6 . . . . . . . . . 10 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
7 itg2monolem2.7 . . . . . . . . . 10 (𝜑𝑃 ∈ dom ∫1)
8 itg2monolem2.8 . . . . . . . . . 10 (𝜑𝑃r𝐺)
9 itg2monolem2.9 . . . . . . . . . 10 (𝜑 → ¬ (∫1𝑃) ≤ 𝑆)
101, 2, 3, 4, 5, 6, 7, 8, 9itg2monolem2 25659 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ)
1110adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → 𝑆 ∈ ℝ)
1211recnd 11209 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → 𝑆 ∈ ℂ)
137adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑃 ∈ dom ∫1)
14 itg1cl 25593 . . . . . . . . 9 (𝑃 ∈ dom ∫1 → (∫1𝑃) ∈ ℝ)
1513, 14syl 17 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (∫1𝑃) ∈ ℝ)
1615recnd 11209 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (∫1𝑃) ∈ ℂ)
17 simpr 484 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 𝑡 ∈ ℝ+)
1817rpred 13002 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑡 ∈ ℝ)
1911, 18readdcld 11210 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑆 + 𝑡) ∈ ℝ)
2019recnd 11209 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (𝑆 + 𝑡) ∈ ℂ)
21 0red 11184 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 ∈ ℝ)
22 0xr 11228 . . . . . . . . . . . 12 0 ∈ ℝ*
2322a1i 11 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ*)
24 fveq2 6861 . . . . . . . . . . . . . 14 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
2524feq1d 6673 . . . . . . . . . . . . 13 (𝑛 = 1 → ((𝐹𝑛):ℝ⟶(0[,]+∞) ↔ (𝐹‘1):ℝ⟶(0[,]+∞)))
26 icossicc 13404 . . . . . . . . . . . . . . 15 (0[,)+∞) ⊆ (0[,]+∞)
27 fss 6707 . . . . . . . . . . . . . . 15 (((𝐹𝑛):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝐹𝑛):ℝ⟶(0[,]+∞))
283, 26, 27sylancl 586 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,]+∞))
2928ralrimiva 3126 . . . . . . . . . . . . 13 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛):ℝ⟶(0[,]+∞))
30 1nn 12204 . . . . . . . . . . . . . 14 1 ∈ ℕ
3130a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℕ)
3225, 29, 31rspcdva 3592 . . . . . . . . . . . 12 (𝜑 → (𝐹‘1):ℝ⟶(0[,]+∞))
33 itg2cl 25640 . . . . . . . . . . . 12 ((𝐹‘1):ℝ⟶(0[,]+∞) → (∫2‘(𝐹‘1)) ∈ ℝ*)
3432, 33syl 17 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝐹‘1)) ∈ ℝ*)
35 itg2cl 25640 . . . . . . . . . . . . . . . 16 ((𝐹𝑛):ℝ⟶(0[,]+∞) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
3628, 35syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
3736fmpttd 7090 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))):ℕ⟶ℝ*)
3837frnd 6699 . . . . . . . . . . . . 13 (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ*)
39 supxrcl 13282 . . . . . . . . . . . . 13 (ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
4038, 39syl 17 . . . . . . . . . . . 12 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
416, 40eqeltrid 2833 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ*)
42 itg2ge0 25643 . . . . . . . . . . . 12 ((𝐹‘1):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝐹‘1)))
4332, 42syl 17 . . . . . . . . . . 11 (𝜑 → 0 ≤ (∫2‘(𝐹‘1)))
44 2fveq3 6866 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (∫2‘(𝐹𝑛)) = (∫2‘(𝐹‘1)))
45 eqid 2730 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))
46 fvex 6874 . . . . . . . . . . . . . . . 16 (∫2‘(𝐹‘1)) ∈ V
4744, 45, 46fvmpt 6971 . . . . . . . . . . . . . . 15 (1 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) = (∫2‘(𝐹‘1)))
4830, 47ax-mp 5 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) = (∫2‘(𝐹‘1))
4937ffnd 6692 . . . . . . . . . . . . . . 15 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ)
50 fnfvelrn 7055 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ ∧ 1 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
5149, 30, 50sylancl 586 . . . . . . . . . . . . . 14 (𝜑 → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
5248, 51eqeltrrid 2834 . . . . . . . . . . . . 13 (𝜑 → (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
53 supxrub 13291 . . . . . . . . . . . . 13 ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))) → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ))
5438, 52, 53syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ))
5554, 6breqtrrdi 5152 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝐹‘1)) ≤ 𝑆)
5623, 34, 41, 43, 55xrletrd 13129 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑆)
5756adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 ≤ 𝑆)
5811, 17ltaddrpd 13035 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑆 < (𝑆 + 𝑡))
5921, 11, 19, 57, 58lelttrd 11339 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → 0 < (𝑆 + 𝑡))
6059gt0ne0d 11749 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (𝑆 + 𝑡) ≠ 0)
6112, 16, 20, 60div23d 12002 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) = ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)))
6211, 19, 60redivcld 12017 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑆 / (𝑆 + 𝑡)) ∈ ℝ)
6362, 15remulcld 11211 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ∈ ℝ)
64 halfre 12402 . . . . . . . . 9 (1 / 2) ∈ ℝ
65 ifcl 4537 . . . . . . . . 9 (((𝑆 / (𝑆 + 𝑡)) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ)
6662, 64, 65sylancl 586 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ)
6766, 15remulcld 11211 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)) ∈ ℝ)
68 max2 13154 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ (𝑆 / (𝑆 + 𝑡)) ∈ ℝ) → (𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
6964, 62, 68sylancr 587 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
707, 14syl 17 . . . . . . . . . . . . . 14 (𝜑 → (∫1𝑃) ∈ ℝ)
7170rexrd 11231 . . . . . . . . . . . . 13 (𝜑 → (∫1𝑃) ∈ ℝ*)
72 xrltnle 11248 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ* ∧ (∫1𝑃) ∈ ℝ*) → (𝑆 < (∫1𝑃) ↔ ¬ (∫1𝑃) ≤ 𝑆))
7341, 71, 72syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑆 < (∫1𝑃) ↔ ¬ (∫1𝑃) ≤ 𝑆))
749, 73mpbird 257 . . . . . . . . . . 11 (𝜑𝑆 < (∫1𝑃))
7574adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 𝑆 < (∫1𝑃))
7621, 11, 15, 57, 75lelttrd 11339 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 < (∫1𝑃))
77 lemul1 12041 . . . . . . . . 9 (((𝑆 / (𝑆 + 𝑡)) ∈ ℝ ∧ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ ∧ ((∫1𝑃) ∈ ℝ ∧ 0 < (∫1𝑃))) → ((𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ↔ ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃))))
7862, 66, 15, 76, 77syl112anc 1376 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ↔ ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃))))
7969, 78mpbid 232 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)))
802adantlr 715 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
813adantlr 715 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
824adantlr 715 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
835adantlr 715 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
8464a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → (1 / 2) ∈ ℝ)
85 halfgt0 12404 . . . . . . . . . . 11 0 < (1 / 2)
8685a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 0 < (1 / 2))
87 max1 13152 . . . . . . . . . . 11 (((1 / 2) ∈ ℝ ∧ (𝑆 / (𝑆 + 𝑡)) ∈ ℝ) → (1 / 2) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
8864, 62, 87sylancr 587 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → (1 / 2) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
8921, 84, 66, 86, 88ltletrd 11341 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 < if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
9020mulridd 11198 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 + 𝑡) · 1) = (𝑆 + 𝑡))
9158, 90breqtrrd 5138 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → 𝑆 < ((𝑆 + 𝑡) · 1))
92 1red 11182 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ+) → 1 ∈ ℝ)
93 ltdivmul 12065 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑆 + 𝑡) ∈ ℝ ∧ 0 < (𝑆 + 𝑡))) → ((𝑆 / (𝑆 + 𝑡)) < 1 ↔ 𝑆 < ((𝑆 + 𝑡) · 1)))
9411, 92, 19, 59, 93syl112anc 1376 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) < 1 ↔ 𝑆 < ((𝑆 + 𝑡) · 1)))
9591, 94mpbird 257 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → (𝑆 / (𝑆 + 𝑡)) < 1)
96 halflt1 12406 . . . . . . . . . 10 (1 / 2) < 1
97 breq1 5113 . . . . . . . . . . 11 ((𝑆 / (𝑆 + 𝑡)) = if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) → ((𝑆 / (𝑆 + 𝑡)) < 1 ↔ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1))
98 breq1 5113 . . . . . . . . . . 11 ((1 / 2) = if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) → ((1 / 2) < 1 ↔ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1))
9997, 98ifboth 4531 . . . . . . . . . 10 (((𝑆 / (𝑆 + 𝑡)) < 1 ∧ (1 / 2) < 1) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1)
10095, 96, 99sylancl 586 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1)
101 1xr 11240 . . . . . . . . . 10 1 ∈ ℝ*
102 elioo2 13354 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ (0(,)1) ↔ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ ∧ 0 < if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∧ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1)))
10322, 101, 102mp2an 692 . . . . . . . . 9 (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ (0(,)1) ↔ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ ∧ 0 < if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∧ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1))
10466, 89, 100, 103syl3anbrc 1344 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ (0(,)1))
1058adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → 𝑃r𝐺)
106 fveq2 6861 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑃𝑦) = (𝑃𝑥))
107106oveq2d 7406 . . . . . . . . . . 11 (𝑦 = 𝑥 → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) = (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)))
108 fveq2 6861 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝐹𝑛)‘𝑦) = ((𝐹𝑛)‘𝑥))
109107, 108breq12d 5123 . . . . . . . . . 10 (𝑦 = 𝑥 → ((if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) ≤ ((𝐹𝑛)‘𝑦) ↔ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)) ≤ ((𝐹𝑛)‘𝑥)))
110109cbvrabv 3419 . . . . . . . . 9 {𝑦 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) ≤ ((𝐹𝑛)‘𝑦)} = {𝑥 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)) ≤ ((𝐹𝑛)‘𝑥)}
111110mpteq2i 5206 . . . . . . . 8 (𝑛 ∈ ℕ ↦ {𝑦 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) ≤ ((𝐹𝑛)‘𝑦)}) = (𝑛 ∈ ℕ ↦ {𝑥 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)) ≤ ((𝐹𝑛)‘𝑥)})
1121, 80, 81, 82, 83, 6, 104, 13, 105, 11, 111itg2monolem1 25658 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)) ≤ 𝑆)
11363, 67, 11, 79, 112letrd 11338 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ 𝑆)
11461, 113eqbrtrd 5132 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) ≤ 𝑆)
11511, 15remulcld 11211 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → (𝑆 · (∫1𝑃)) ∈ ℝ)
116 ledivmul2 12069 . . . . . 6 (((𝑆 · (∫1𝑃)) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ((𝑆 + 𝑡) ∈ ℝ ∧ 0 < (𝑆 + 𝑡))) → (((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) ≤ 𝑆 ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
117115, 11, 19, 59, 116syl112anc 1376 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → (((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) ≤ 𝑆 ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
118114, 117mpbid 232 . . . 4 ((𝜑𝑡 ∈ ℝ+) → (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡)))
11966, 15, 89, 76mulgt0d 11336 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → 0 < (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)))
12021, 67, 11, 119, 112ltletrd 11341 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → 0 < 𝑆)
121 lemul2 12042 . . . . 5 (((∫1𝑃) ∈ ℝ ∧ (𝑆 + 𝑡) ∈ ℝ ∧ (𝑆 ∈ ℝ ∧ 0 < 𝑆)) → ((∫1𝑃) ≤ (𝑆 + 𝑡) ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
12215, 19, 11, 120, 121syl112anc 1376 . . . 4 ((𝜑𝑡 ∈ ℝ+) → ((∫1𝑃) ≤ (𝑆 + 𝑡) ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
123118, 122mpbird 257 . . 3 ((𝜑𝑡 ∈ ℝ+) → (∫1𝑃) ≤ (𝑆 + 𝑡))
124123ralrimiva 3126 . 2 (𝜑 → ∀𝑡 ∈ ℝ+ (∫1𝑃) ≤ (𝑆 + 𝑡))
125 alrple 13173 . . 3 (((∫1𝑃) ∈ ℝ ∧ 𝑆 ∈ ℝ) → ((∫1𝑃) ≤ 𝑆 ↔ ∀𝑡 ∈ ℝ+ (∫1𝑃) ≤ (𝑆 + 𝑡)))
12670, 10, 125syl2anc 584 . 2 (𝜑 → ((∫1𝑃) ≤ 𝑆 ↔ ∀𝑡 ∈ ℝ+ (∫1𝑃) ≤ (𝑆 + 𝑡)))
127124, 126mpbird 257 1 (𝜑 → (∫1𝑃) ≤ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  wss 3917  ifcif 4491   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  r cofr 7655  supcsup 9398  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216   / cdiv 11842  cn 12193  2c2 12248  +crp 12958  (,)cioo 13313  [,)cico 13315  [,]cicc 13316  MblFncmbf 25522  1citg1 25523  2citg2 25524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cmp 23281  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529
This theorem is referenced by:  itg2mono  25661
  Copyright terms: Public domain W3C validator