MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmulnbnd Structured version   Visualization version   GIF version

Theorem expmulnbnd 14194
Description: Exponentiation with a base greater than 1 is not bounded by any linear function. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
expmulnbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘

Proof of Theorem expmulnbnd
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2re 12282 . . . . 5 2 ∈ ℝ
2 simp1 1136 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐴 ∈ ℝ)
3 remulcl 11191 . . . . 5 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
41, 2, 3sylancr 587 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (2 · 𝐴) ∈ ℝ)
5 simp3 1138 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 < 𝐵)
6 1re 11210 . . . . . 6 1 ∈ ℝ
7 simp2 1137 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ)
8 difrp 13008 . . . . . 6 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 ↔ (𝐵 − 1) ∈ ℝ+))
96, 7, 8sylancr 587 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 < 𝐵 ↔ (𝐵 − 1) ∈ ℝ+))
105, 9mpbid 231 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ∈ ℝ+)
114, 10rerpdivcld 13043 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((2 · 𝐴) / (𝐵 − 1)) ∈ ℝ)
12 expnbnd 14191 . . 3 ((((2 · 𝐴) / (𝐵 − 1)) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑛 ∈ ℕ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))
1311, 7, 5, 12syl3anc 1371 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑛 ∈ ℕ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))
14 2nn0 12485 . . . 4 2 ∈ ℕ0
15 nnnn0 12475 . . . . 5 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1615ad2antrl 726 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → 𝑛 ∈ ℕ0)
17 nn0mulcl 12504 . . . 4 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
1814, 16, 17sylancr 587 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → (2 · 𝑛) ∈ ℕ0)
192ad2antrr 724 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐴 ∈ ℝ)
20 2nn 12281 . . . . . . . . 9 2 ∈ ℕ
21 simprl 769 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → 𝑛 ∈ ℕ)
22 nnmulcl 12232 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
2320, 21, 22sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → (2 · 𝑛) ∈ ℕ)
24 eluznn 12898 . . . . . . . 8 (((2 · 𝑛) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℕ)
2523, 24sylan 580 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℕ)
2625nnred 12223 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℝ)
2719, 26remulcld 11240 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) ∈ ℝ)
28 0re 11212 . . . . . . . 8 0 ∈ ℝ
29 ifcl 4572 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐴, 𝐴, 0) ∈ ℝ)
3019, 28, 29sylancl 586 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → if(0 ≤ 𝐴, 𝐴, 0) ∈ ℝ)
31 remulcl 11191 . . . . . . 7 ((2 ∈ ℝ ∧ if(0 ≤ 𝐴, 𝐴, 0) ∈ ℝ) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) ∈ ℝ)
321, 30, 31sylancr 587 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) ∈ ℝ)
33 simplrl 775 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℕ)
3433nnred 12223 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℝ)
3526, 34resubcld 11638 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℝ)
3632, 35remulcld 11240 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) ∈ ℝ)
377ad2antrr 724 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐵 ∈ ℝ)
3825nnnn0d 12528 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℕ0)
39 reexpcl 14040 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
4037, 38, 39syl2anc 584 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵𝑘) ∈ ℝ)
41 remulcl 11191 . . . . . . . 8 ((2 ∈ ℝ ∧ (𝑘𝑛) ∈ ℝ) → (2 · (𝑘𝑛)) ∈ ℝ)
421, 35, 41sylancr 587 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · (𝑘𝑛)) ∈ ℝ)
4338nn0ge0d 12531 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ≤ 𝑘)
44 max1 13160 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐴, 𝐴, 0))
4528, 19, 44sylancr 587 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ≤ if(0 ≤ 𝐴, 𝐴, 0))
46 remulcl 11191 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (2 · 𝑛) ∈ ℝ)
471, 34, 46sylancr 587 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑛) ∈ ℝ)
48 eluzle 12831 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘(2 · 𝑛)) → (2 · 𝑛) ≤ 𝑘)
4948adantl 482 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑛) ≤ 𝑘)
5047, 26, 26, 49leadd2dd 11825 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘 + (2 · 𝑛)) ≤ (𝑘 + 𝑘))
5126recnd 11238 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℂ)
52512timesd 12451 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑘) = (𝑘 + 𝑘))
5350, 52breqtrrd 5175 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘 + (2 · 𝑛)) ≤ (2 · 𝑘))
54 remulcl 11191 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (2 · 𝑘) ∈ ℝ)
551, 26, 54sylancr 587 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑘) ∈ ℝ)
56 leaddsub 11686 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ (2 · 𝑛) ∈ ℝ ∧ (2 · 𝑘) ∈ ℝ) → ((𝑘 + (2 · 𝑛)) ≤ (2 · 𝑘) ↔ 𝑘 ≤ ((2 · 𝑘) − (2 · 𝑛))))
5726, 47, 55, 56syl3anc 1371 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝑘 + (2 · 𝑛)) ≤ (2 · 𝑘) ↔ 𝑘 ≤ ((2 · 𝑘) − (2 · 𝑛))))
5853, 57mpbid 231 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ≤ ((2 · 𝑘) − (2 · 𝑛)))
59 2cnd 12286 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 2 ∈ ℂ)
6034recnd 11238 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℂ)
6159, 51, 60subdid 11666 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
6258, 61breqtrrd 5175 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ≤ (2 · (𝑘𝑛)))
63 max2 13162 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ if(0 ≤ 𝐴, 𝐴, 0))
6428, 19, 63sylancr 587 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐴 ≤ if(0 ≤ 𝐴, 𝐴, 0))
6526, 42, 19, 30, 43, 45, 62, 64lemul12bd 12153 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘 · 𝐴) ≤ ((2 · (𝑘𝑛)) · if(0 ≤ 𝐴, 𝐴, 0)))
6619recnd 11238 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐴 ∈ ℂ)
6766, 51mulcomd 11231 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) = (𝑘 · 𝐴))
6830recnd 11238 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → if(0 ≤ 𝐴, 𝐴, 0) ∈ ℂ)
6935recnd 11238 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℂ)
7059, 68, 69mul32d 11420 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) = ((2 · (𝑘𝑛)) · if(0 ≤ 𝐴, 𝐴, 0)))
7165, 67, 703brtr4d 5179 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) ≤ ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)))
7210ad2antrr 724 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵 − 1) ∈ ℝ+)
7372rpred 13012 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵 − 1) ∈ ℝ)
7473, 35remulcld 11240 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) ∈ ℝ)
7533nnnn0d 12528 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℕ0)
76 reexpcl 14040 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℕ0) → (𝐵𝑛) ∈ ℝ)
7737, 75, 76syl2anc 584 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵𝑛) ∈ ℝ)
7874, 77remulcld 11240 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) ∈ ℝ)
79 simplrr 776 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))
801, 19, 3sylancr 587 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝐴) ∈ ℝ)
8180, 77, 72ltdivmuld 13063 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛) ↔ (2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛))))
8279, 81mpbid 231 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛)))
835ad2antrr 724 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 1 < 𝐵)
84 posdif 11703 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
856, 37, 84sylancr 587 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
8683, 85mpbid 231 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < (𝐵 − 1))
8733nnzd 12581 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℤ)
8828a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ∈ ℝ)
896a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 1 ∈ ℝ)
90 0lt1 11732 . . . . . . . . . . . . 13 0 < 1
9190a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < 1)
9288, 89, 37, 91, 83lttrd 11371 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < 𝐵)
93 expgt0 14057 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵𝑛))
9437, 87, 92, 93syl3anc 1371 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < (𝐵𝑛))
9573, 77, 86, 94mulgt0d 11365 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < ((𝐵 − 1) · (𝐵𝑛)))
96 oveq2 7413 . . . . . . . . . . 11 (𝐴 = if(0 ≤ 𝐴, 𝐴, 0) → (2 · 𝐴) = (2 · if(0 ≤ 𝐴, 𝐴, 0)))
9796breq1d 5157 . . . . . . . . . 10 (𝐴 = if(0 ≤ 𝐴, 𝐴, 0) → ((2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛)) ↔ (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛))))
98 2t0e0 12377 . . . . . . . . . . . 12 (2 · 0) = 0
99 oveq2 7413 . . . . . . . . . . . 12 (0 = if(0 ≤ 𝐴, 𝐴, 0) → (2 · 0) = (2 · if(0 ≤ 𝐴, 𝐴, 0)))
10098, 99eqtr3id 2786 . . . . . . . . . . 11 (0 = if(0 ≤ 𝐴, 𝐴, 0) → 0 = (2 · if(0 ≤ 𝐴, 𝐴, 0)))
101100breq1d 5157 . . . . . . . . . 10 (0 = if(0 ≤ 𝐴, 𝐴, 0) → (0 < ((𝐵 − 1) · (𝐵𝑛)) ↔ (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛))))
10297, 101ifboth 4566 . . . . . . . . 9 (((2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛)) ∧ 0 < ((𝐵 − 1) · (𝐵𝑛))) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)))
10382, 95, 102syl2anc 584 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)))
10473, 77remulcld 11240 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝐵𝑛)) ∈ ℝ)
105 simpr 485 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ (ℤ‘(2 · 𝑛)))
106602timesd 12451 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑛) = (𝑛 + 𝑛))
107106fveq2d 6892 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (ℤ‘(2 · 𝑛)) = (ℤ‘(𝑛 + 𝑛)))
108105, 107eleqtrd 2835 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ (ℤ‘(𝑛 + 𝑛)))
109 eluzsub 12848 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(𝑛 + 𝑛))) → (𝑘𝑛) ∈ (ℤ𝑛))
11087, 87, 108, 109syl3anc 1371 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ (ℤ𝑛))
111 eluznn 12898 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝑘𝑛) ∈ (ℤ𝑛)) → (𝑘𝑛) ∈ ℕ)
11233, 110, 111syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℕ)
113112nngt0d 12257 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < (𝑘𝑛))
114 ltmul1 12060 . . . . . . . . 9 (((2 · if(0 ≤ 𝐴, 𝐴, 0)) ∈ ℝ ∧ ((𝐵 − 1) · (𝐵𝑛)) ∈ ℝ ∧ ((𝑘𝑛) ∈ ℝ ∧ 0 < (𝑘𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)) ↔ ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛))))
11532, 104, 35, 113, 114syl112anc 1374 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)) ↔ ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛))))
116103, 115mpbid 231 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛)))
11773recnd 11238 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵 − 1) ∈ ℂ)
11877recnd 11238 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵𝑛) ∈ ℂ)
119117, 118, 69mul32d 11420 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛)) = (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)))
120116, 119breqtrd 5173 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)))
121 peano2re 11383 . . . . . . . . . 10 (((𝐵 − 1) · (𝑘𝑛)) ∈ ℝ → (((𝐵 − 1) · (𝑘𝑛)) + 1) ∈ ℝ)
12274, 121syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) + 1) ∈ ℝ)
123112nnnn0d 12528 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℕ0)
124 reexpcl 14040 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝑘𝑛) ∈ ℕ0) → (𝐵↑(𝑘𝑛)) ∈ ℝ)
12537, 123, 124syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵↑(𝑘𝑛)) ∈ ℝ)
12674ltp1d 12140 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) < (((𝐵 − 1) · (𝑘𝑛)) + 1))
12788, 37, 92ltled 11358 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ≤ 𝐵)
128 bernneq2 14189 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝑘𝑛) ∈ ℕ0 ∧ 0 ≤ 𝐵) → (((𝐵 − 1) · (𝑘𝑛)) + 1) ≤ (𝐵↑(𝑘𝑛)))
12937, 123, 127, 128syl3anc 1371 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) + 1) ≤ (𝐵↑(𝑘𝑛)))
13074, 122, 125, 126, 129ltletrd 11370 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) < (𝐵↑(𝑘𝑛)))
13137recnd 11238 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐵 ∈ ℂ)
13292gt0ne0d 11774 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐵 ≠ 0)
133 eluzelz 12828 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘(2 · 𝑛)) → 𝑘 ∈ ℤ)
134133adantl 482 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℤ)
135 expsub 14072 . . . . . . . . 9 (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐵↑(𝑘𝑛)) = ((𝐵𝑘) / (𝐵𝑛)))
136131, 132, 134, 87, 135syl22anc 837 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵↑(𝑘𝑛)) = ((𝐵𝑘) / (𝐵𝑛)))
137130, 136breqtrd 5173 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) < ((𝐵𝑘) / (𝐵𝑛)))
138 ltmuldiv 12083 . . . . . . . 8 ((((𝐵 − 1) · (𝑘𝑛)) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ ∧ ((𝐵𝑛) ∈ ℝ ∧ 0 < (𝐵𝑛))) → ((((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) < (𝐵𝑘) ↔ ((𝐵 − 1) · (𝑘𝑛)) < ((𝐵𝑘) / (𝐵𝑛))))
13974, 40, 77, 94, 138syl112anc 1374 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) < (𝐵𝑘) ↔ ((𝐵 − 1) · (𝑘𝑛)) < ((𝐵𝑘) / (𝐵𝑛))))
140137, 139mpbird 256 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) < (𝐵𝑘))
14136, 78, 40, 120, 140lttrd 11371 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (𝐵𝑘))
14227, 36, 40, 71, 141lelttrd 11368 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) < (𝐵𝑘))
143142ralrimiva 3146 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → ∀𝑘 ∈ (ℤ‘(2 · 𝑛))(𝐴 · 𝑘) < (𝐵𝑘))
144 fveq2 6888 . . . . 5 (𝑗 = (2 · 𝑛) → (ℤ𝑗) = (ℤ‘(2 · 𝑛)))
145144raleqdv 3325 . . . 4 (𝑗 = (2 · 𝑛) → (∀𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘) ↔ ∀𝑘 ∈ (ℤ‘(2 · 𝑛))(𝐴 · 𝑘) < (𝐵𝑘)))
146145rspcev 3612 . . 3 (((2 · 𝑛) ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ‘(2 · 𝑛))(𝐴 · 𝑘) < (𝐵𝑘)) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
14718, 143, 146syl2anc 584 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
14813, 147rexlimddv 3161 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  ifcif 4527   class class class wbr 5147  cfv 6540  (class class class)co 7405  cc 11104  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111   < clt 11244  cle 11245  cmin 11440   / cdiv 11867  cn 12208  2c2 12263  0cn0 12468  cz 12554  cuz 12818  +crp 12970  cexp 14023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fl 13753  df-seq 13963  df-exp 14024
This theorem is referenced by:  geomulcvg  15818
  Copyright terms: Public domain W3C validator