MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmulnbnd Structured version   Visualization version   GIF version

Theorem expmulnbnd 13688
Description: Exponentiation with a base greater than 1 is not bounded by any linear function. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
expmulnbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘

Proof of Theorem expmulnbnd
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2re 11790 . . . . 5 2 ∈ ℝ
2 simp1 1137 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐴 ∈ ℝ)
3 remulcl 10700 . . . . 5 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
41, 2, 3sylancr 590 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (2 · 𝐴) ∈ ℝ)
5 simp3 1139 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 < 𝐵)
6 1re 10719 . . . . . 6 1 ∈ ℝ
7 simp2 1138 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ)
8 difrp 12510 . . . . . 6 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 ↔ (𝐵 − 1) ∈ ℝ+))
96, 7, 8sylancr 590 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 < 𝐵 ↔ (𝐵 − 1) ∈ ℝ+))
105, 9mpbid 235 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ∈ ℝ+)
114, 10rerpdivcld 12545 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((2 · 𝐴) / (𝐵 − 1)) ∈ ℝ)
12 expnbnd 13685 . . 3 ((((2 · 𝐴) / (𝐵 − 1)) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑛 ∈ ℕ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))
1311, 7, 5, 12syl3anc 1372 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑛 ∈ ℕ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))
14 2nn0 11993 . . . 4 2 ∈ ℕ0
15 nnnn0 11983 . . . . 5 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1615ad2antrl 728 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → 𝑛 ∈ ℕ0)
17 nn0mulcl 12012 . . . 4 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
1814, 16, 17sylancr 590 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → (2 · 𝑛) ∈ ℕ0)
192ad2antrr 726 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐴 ∈ ℝ)
20 2nn 11789 . . . . . . . . 9 2 ∈ ℕ
21 simprl 771 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → 𝑛 ∈ ℕ)
22 nnmulcl 11740 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
2320, 21, 22sylancr 590 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → (2 · 𝑛) ∈ ℕ)
24 eluznn 12400 . . . . . . . 8 (((2 · 𝑛) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℕ)
2523, 24sylan 583 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℕ)
2625nnred 11731 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℝ)
2719, 26remulcld 10749 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) ∈ ℝ)
28 0re 10721 . . . . . . . 8 0 ∈ ℝ
29 ifcl 4459 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐴, 𝐴, 0) ∈ ℝ)
3019, 28, 29sylancl 589 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → if(0 ≤ 𝐴, 𝐴, 0) ∈ ℝ)
31 remulcl 10700 . . . . . . 7 ((2 ∈ ℝ ∧ if(0 ≤ 𝐴, 𝐴, 0) ∈ ℝ) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) ∈ ℝ)
321, 30, 31sylancr 590 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) ∈ ℝ)
33 simplrl 777 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℕ)
3433nnred 11731 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℝ)
3526, 34resubcld 11146 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℝ)
3632, 35remulcld 10749 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) ∈ ℝ)
377ad2antrr 726 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐵 ∈ ℝ)
3825nnnn0d 12036 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℕ0)
39 reexpcl 13538 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
4037, 38, 39syl2anc 587 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵𝑘) ∈ ℝ)
41 remulcl 10700 . . . . . . . 8 ((2 ∈ ℝ ∧ (𝑘𝑛) ∈ ℝ) → (2 · (𝑘𝑛)) ∈ ℝ)
421, 35, 41sylancr 590 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · (𝑘𝑛)) ∈ ℝ)
4338nn0ge0d 12039 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ≤ 𝑘)
44 max1 12661 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐴, 𝐴, 0))
4528, 19, 44sylancr 590 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ≤ if(0 ≤ 𝐴, 𝐴, 0))
46 remulcl 10700 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (2 · 𝑛) ∈ ℝ)
471, 34, 46sylancr 590 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑛) ∈ ℝ)
48 eluzle 12337 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘(2 · 𝑛)) → (2 · 𝑛) ≤ 𝑘)
4948adantl 485 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑛) ≤ 𝑘)
5047, 26, 26, 49leadd2dd 11333 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘 + (2 · 𝑛)) ≤ (𝑘 + 𝑘))
5126recnd 10747 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℂ)
52512timesd 11959 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑘) = (𝑘 + 𝑘))
5350, 52breqtrrd 5058 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘 + (2 · 𝑛)) ≤ (2 · 𝑘))
54 remulcl 10700 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (2 · 𝑘) ∈ ℝ)
551, 26, 54sylancr 590 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑘) ∈ ℝ)
56 leaddsub 11194 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ (2 · 𝑛) ∈ ℝ ∧ (2 · 𝑘) ∈ ℝ) → ((𝑘 + (2 · 𝑛)) ≤ (2 · 𝑘) ↔ 𝑘 ≤ ((2 · 𝑘) − (2 · 𝑛))))
5726, 47, 55, 56syl3anc 1372 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝑘 + (2 · 𝑛)) ≤ (2 · 𝑘) ↔ 𝑘 ≤ ((2 · 𝑘) − (2 · 𝑛))))
5853, 57mpbid 235 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ≤ ((2 · 𝑘) − (2 · 𝑛)))
59 2cnd 11794 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 2 ∈ ℂ)
6034recnd 10747 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℂ)
6159, 51, 60subdid 11174 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
6258, 61breqtrrd 5058 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ≤ (2 · (𝑘𝑛)))
63 max2 12663 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ if(0 ≤ 𝐴, 𝐴, 0))
6428, 19, 63sylancr 590 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐴 ≤ if(0 ≤ 𝐴, 𝐴, 0))
6526, 42, 19, 30, 43, 45, 62, 64lemul12bd 11661 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘 · 𝐴) ≤ ((2 · (𝑘𝑛)) · if(0 ≤ 𝐴, 𝐴, 0)))
6619recnd 10747 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐴 ∈ ℂ)
6766, 51mulcomd 10740 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) = (𝑘 · 𝐴))
6830recnd 10747 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → if(0 ≤ 𝐴, 𝐴, 0) ∈ ℂ)
6935recnd 10747 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℂ)
7059, 68, 69mul32d 10928 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) = ((2 · (𝑘𝑛)) · if(0 ≤ 𝐴, 𝐴, 0)))
7165, 67, 703brtr4d 5062 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) ≤ ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)))
7210ad2antrr 726 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵 − 1) ∈ ℝ+)
7372rpred 12514 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵 − 1) ∈ ℝ)
7473, 35remulcld 10749 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) ∈ ℝ)
7533nnnn0d 12036 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℕ0)
76 reexpcl 13538 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℕ0) → (𝐵𝑛) ∈ ℝ)
7737, 75, 76syl2anc 587 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵𝑛) ∈ ℝ)
7874, 77remulcld 10749 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) ∈ ℝ)
79 simplrr 778 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))
801, 19, 3sylancr 590 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝐴) ∈ ℝ)
8180, 77, 72ltdivmuld 12565 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛) ↔ (2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛))))
8279, 81mpbid 235 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛)))
835ad2antrr 726 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 1 < 𝐵)
84 posdif 11211 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
856, 37, 84sylancr 590 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
8683, 85mpbid 235 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < (𝐵 − 1))
8733nnzd 12167 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℤ)
8828a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ∈ ℝ)
896a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 1 ∈ ℝ)
90 0lt1 11240 . . . . . . . . . . . . 13 0 < 1
9190a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < 1)
9288, 89, 37, 91, 83lttrd 10879 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < 𝐵)
93 expgt0 13554 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵𝑛))
9437, 87, 92, 93syl3anc 1372 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < (𝐵𝑛))
9573, 77, 86, 94mulgt0d 10873 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < ((𝐵 − 1) · (𝐵𝑛)))
96 oveq2 7178 . . . . . . . . . . 11 (𝐴 = if(0 ≤ 𝐴, 𝐴, 0) → (2 · 𝐴) = (2 · if(0 ≤ 𝐴, 𝐴, 0)))
9796breq1d 5040 . . . . . . . . . 10 (𝐴 = if(0 ≤ 𝐴, 𝐴, 0) → ((2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛)) ↔ (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛))))
98 2t0e0 11885 . . . . . . . . . . . 12 (2 · 0) = 0
99 oveq2 7178 . . . . . . . . . . . 12 (0 = if(0 ≤ 𝐴, 𝐴, 0) → (2 · 0) = (2 · if(0 ≤ 𝐴, 𝐴, 0)))
10098, 99eqtr3id 2787 . . . . . . . . . . 11 (0 = if(0 ≤ 𝐴, 𝐴, 0) → 0 = (2 · if(0 ≤ 𝐴, 𝐴, 0)))
101100breq1d 5040 . . . . . . . . . 10 (0 = if(0 ≤ 𝐴, 𝐴, 0) → (0 < ((𝐵 − 1) · (𝐵𝑛)) ↔ (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛))))
10297, 101ifboth 4453 . . . . . . . . 9 (((2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛)) ∧ 0 < ((𝐵 − 1) · (𝐵𝑛))) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)))
10382, 95, 102syl2anc 587 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)))
10473, 77remulcld 10749 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝐵𝑛)) ∈ ℝ)
105 simpr 488 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ (ℤ‘(2 · 𝑛)))
106602timesd 11959 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑛) = (𝑛 + 𝑛))
107106fveq2d 6678 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (ℤ‘(2 · 𝑛)) = (ℤ‘(𝑛 + 𝑛)))
108105, 107eleqtrd 2835 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ (ℤ‘(𝑛 + 𝑛)))
109 eluzsub 12356 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(𝑛 + 𝑛))) → (𝑘𝑛) ∈ (ℤ𝑛))
11087, 87, 108, 109syl3anc 1372 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ (ℤ𝑛))
111 eluznn 12400 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝑘𝑛) ∈ (ℤ𝑛)) → (𝑘𝑛) ∈ ℕ)
11233, 110, 111syl2anc 587 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℕ)
113112nngt0d 11765 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < (𝑘𝑛))
114 ltmul1 11568 . . . . . . . . 9 (((2 · if(0 ≤ 𝐴, 𝐴, 0)) ∈ ℝ ∧ ((𝐵 − 1) · (𝐵𝑛)) ∈ ℝ ∧ ((𝑘𝑛) ∈ ℝ ∧ 0 < (𝑘𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)) ↔ ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛))))
11532, 104, 35, 113, 114syl112anc 1375 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)) ↔ ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛))))
116103, 115mpbid 235 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛)))
11773recnd 10747 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵 − 1) ∈ ℂ)
11877recnd 10747 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵𝑛) ∈ ℂ)
119117, 118, 69mul32d 10928 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛)) = (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)))
120116, 119breqtrd 5056 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)))
121 peano2re 10891 . . . . . . . . . 10 (((𝐵 − 1) · (𝑘𝑛)) ∈ ℝ → (((𝐵 − 1) · (𝑘𝑛)) + 1) ∈ ℝ)
12274, 121syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) + 1) ∈ ℝ)
123112nnnn0d 12036 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℕ0)
124 reexpcl 13538 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝑘𝑛) ∈ ℕ0) → (𝐵↑(𝑘𝑛)) ∈ ℝ)
12537, 123, 124syl2anc 587 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵↑(𝑘𝑛)) ∈ ℝ)
12674ltp1d 11648 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) < (((𝐵 − 1) · (𝑘𝑛)) + 1))
12788, 37, 92ltled 10866 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ≤ 𝐵)
128 bernneq2 13683 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝑘𝑛) ∈ ℕ0 ∧ 0 ≤ 𝐵) → (((𝐵 − 1) · (𝑘𝑛)) + 1) ≤ (𝐵↑(𝑘𝑛)))
12937, 123, 127, 128syl3anc 1372 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) + 1) ≤ (𝐵↑(𝑘𝑛)))
13074, 122, 125, 126, 129ltletrd 10878 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) < (𝐵↑(𝑘𝑛)))
13137recnd 10747 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐵 ∈ ℂ)
13292gt0ne0d 11282 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐵 ≠ 0)
133 eluzelz 12334 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘(2 · 𝑛)) → 𝑘 ∈ ℤ)
134133adantl 485 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℤ)
135 expsub 13569 . . . . . . . . 9 (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐵↑(𝑘𝑛)) = ((𝐵𝑘) / (𝐵𝑛)))
136131, 132, 134, 87, 135syl22anc 838 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵↑(𝑘𝑛)) = ((𝐵𝑘) / (𝐵𝑛)))
137130, 136breqtrd 5056 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) < ((𝐵𝑘) / (𝐵𝑛)))
138 ltmuldiv 11591 . . . . . . . 8 ((((𝐵 − 1) · (𝑘𝑛)) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ ∧ ((𝐵𝑛) ∈ ℝ ∧ 0 < (𝐵𝑛))) → ((((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) < (𝐵𝑘) ↔ ((𝐵 − 1) · (𝑘𝑛)) < ((𝐵𝑘) / (𝐵𝑛))))
13974, 40, 77, 94, 138syl112anc 1375 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) < (𝐵𝑘) ↔ ((𝐵 − 1) · (𝑘𝑛)) < ((𝐵𝑘) / (𝐵𝑛))))
140137, 139mpbird 260 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) < (𝐵𝑘))
14136, 78, 40, 120, 140lttrd 10879 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (𝐵𝑘))
14227, 36, 40, 71, 141lelttrd 10876 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) < (𝐵𝑘))
143142ralrimiva 3096 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → ∀𝑘 ∈ (ℤ‘(2 · 𝑛))(𝐴 · 𝑘) < (𝐵𝑘))
144 fveq2 6674 . . . . 5 (𝑗 = (2 · 𝑛) → (ℤ𝑗) = (ℤ‘(2 · 𝑛)))
145144raleqdv 3316 . . . 4 (𝑗 = (2 · 𝑛) → (∀𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘) ↔ ∀𝑘 ∈ (ℤ‘(2 · 𝑛))(𝐴 · 𝑘) < (𝐵𝑘)))
146145rspcev 3526 . . 3 (((2 · 𝑛) ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ‘(2 · 𝑛))(𝐴 · 𝑘) < (𝐵𝑘)) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
14718, 143, 146syl2anc 587 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
14813, 147rexlimddv 3201 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934  wral 3053  wrex 3054  ifcif 4414   class class class wbr 5030  cfv 6339  (class class class)co 7170  cc 10613  cr 10614  0cc0 10615  1c1 10616   + caddc 10618   · cmul 10620   < clt 10753  cle 10754  cmin 10948   / cdiv 11375  cn 11716  2c2 11771  0cn0 11976  cz 12062  cuz 12324  +crp 12472  cexp 13521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-inf 8980  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-n0 11977  df-z 12063  df-uz 12325  df-rp 12473  df-fl 13253  df-seq 13461  df-exp 13522
This theorem is referenced by:  geomulcvg  15324
  Copyright terms: Public domain W3C validator