MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmulnbnd Structured version   Visualization version   GIF version

Theorem expmulnbnd 13592
Description: Exponentiation with a mantissa greater than 1 is not bounded by any linear function. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
expmulnbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘

Proof of Theorem expmulnbnd
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2re 11699 . . . . 5 2 ∈ ℝ
2 simp1 1133 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐴 ∈ ℝ)
3 remulcl 10611 . . . . 5 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
41, 2, 3sylancr 590 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (2 · 𝐴) ∈ ℝ)
5 simp3 1135 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 < 𝐵)
6 1re 10630 . . . . . 6 1 ∈ ℝ
7 simp2 1134 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ)
8 difrp 12415 . . . . . 6 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 ↔ (𝐵 − 1) ∈ ℝ+))
96, 7, 8sylancr 590 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 < 𝐵 ↔ (𝐵 − 1) ∈ ℝ+))
105, 9mpbid 235 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ∈ ℝ+)
114, 10rerpdivcld 12450 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((2 · 𝐴) / (𝐵 − 1)) ∈ ℝ)
12 expnbnd 13589 . . 3 ((((2 · 𝐴) / (𝐵 − 1)) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑛 ∈ ℕ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))
1311, 7, 5, 12syl3anc 1368 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑛 ∈ ℕ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))
14 2nn0 11902 . . . 4 2 ∈ ℕ0
15 nnnn0 11892 . . . . 5 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1615ad2antrl 727 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → 𝑛 ∈ ℕ0)
17 nn0mulcl 11921 . . . 4 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
1814, 16, 17sylancr 590 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → (2 · 𝑛) ∈ ℕ0)
192ad2antrr 725 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐴 ∈ ℝ)
20 2nn 11698 . . . . . . . . 9 2 ∈ ℕ
21 simprl 770 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → 𝑛 ∈ ℕ)
22 nnmulcl 11649 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
2320, 21, 22sylancr 590 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → (2 · 𝑛) ∈ ℕ)
24 eluznn 12306 . . . . . . . 8 (((2 · 𝑛) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℕ)
2523, 24sylan 583 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℕ)
2625nnred 11640 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℝ)
2719, 26remulcld 10660 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) ∈ ℝ)
28 0re 10632 . . . . . . . 8 0 ∈ ℝ
29 ifcl 4469 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐴, 𝐴, 0) ∈ ℝ)
3019, 28, 29sylancl 589 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → if(0 ≤ 𝐴, 𝐴, 0) ∈ ℝ)
31 remulcl 10611 . . . . . . 7 ((2 ∈ ℝ ∧ if(0 ≤ 𝐴, 𝐴, 0) ∈ ℝ) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) ∈ ℝ)
321, 30, 31sylancr 590 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) ∈ ℝ)
33 simplrl 776 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℕ)
3433nnred 11640 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℝ)
3526, 34resubcld 11057 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℝ)
3632, 35remulcld 10660 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) ∈ ℝ)
377ad2antrr 725 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐵 ∈ ℝ)
3825nnnn0d 11943 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℕ0)
39 reexpcl 13442 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
4037, 38, 39syl2anc 587 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵𝑘) ∈ ℝ)
41 remulcl 10611 . . . . . . . 8 ((2 ∈ ℝ ∧ (𝑘𝑛) ∈ ℝ) → (2 · (𝑘𝑛)) ∈ ℝ)
421, 35, 41sylancr 590 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · (𝑘𝑛)) ∈ ℝ)
4338nn0ge0d 11946 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ≤ 𝑘)
44 max1 12566 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐴, 𝐴, 0))
4528, 19, 44sylancr 590 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ≤ if(0 ≤ 𝐴, 𝐴, 0))
46 remulcl 10611 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (2 · 𝑛) ∈ ℝ)
471, 34, 46sylancr 590 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑛) ∈ ℝ)
48 eluzle 12244 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘(2 · 𝑛)) → (2 · 𝑛) ≤ 𝑘)
4948adantl 485 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑛) ≤ 𝑘)
5047, 26, 26, 49leadd2dd 11244 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘 + (2 · 𝑛)) ≤ (𝑘 + 𝑘))
5126recnd 10658 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℂ)
52512timesd 11868 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑘) = (𝑘 + 𝑘))
5350, 52breqtrrd 5058 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘 + (2 · 𝑛)) ≤ (2 · 𝑘))
54 remulcl 10611 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (2 · 𝑘) ∈ ℝ)
551, 26, 54sylancr 590 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑘) ∈ ℝ)
56 leaddsub 11105 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ (2 · 𝑛) ∈ ℝ ∧ (2 · 𝑘) ∈ ℝ) → ((𝑘 + (2 · 𝑛)) ≤ (2 · 𝑘) ↔ 𝑘 ≤ ((2 · 𝑘) − (2 · 𝑛))))
5726, 47, 55, 56syl3anc 1368 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝑘 + (2 · 𝑛)) ≤ (2 · 𝑘) ↔ 𝑘 ≤ ((2 · 𝑘) − (2 · 𝑛))))
5853, 57mpbid 235 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ≤ ((2 · 𝑘) − (2 · 𝑛)))
59 2cnd 11703 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 2 ∈ ℂ)
6034recnd 10658 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℂ)
6159, 51, 60subdid 11085 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
6258, 61breqtrrd 5058 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ≤ (2 · (𝑘𝑛)))
63 max2 12568 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ if(0 ≤ 𝐴, 𝐴, 0))
6428, 19, 63sylancr 590 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐴 ≤ if(0 ≤ 𝐴, 𝐴, 0))
6526, 42, 19, 30, 43, 45, 62, 64lemul12bd 11572 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘 · 𝐴) ≤ ((2 · (𝑘𝑛)) · if(0 ≤ 𝐴, 𝐴, 0)))
6619recnd 10658 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐴 ∈ ℂ)
6766, 51mulcomd 10651 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) = (𝑘 · 𝐴))
6830recnd 10658 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → if(0 ≤ 𝐴, 𝐴, 0) ∈ ℂ)
6935recnd 10658 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℂ)
7059, 68, 69mul32d 10839 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) = ((2 · (𝑘𝑛)) · if(0 ≤ 𝐴, 𝐴, 0)))
7165, 67, 703brtr4d 5062 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) ≤ ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)))
7210ad2antrr 725 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵 − 1) ∈ ℝ+)
7372rpred 12419 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵 − 1) ∈ ℝ)
7473, 35remulcld 10660 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) ∈ ℝ)
7533nnnn0d 11943 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℕ0)
76 reexpcl 13442 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℕ0) → (𝐵𝑛) ∈ ℝ)
7737, 75, 76syl2anc 587 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵𝑛) ∈ ℝ)
7874, 77remulcld 10660 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) ∈ ℝ)
79 simplrr 777 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))
801, 19, 3sylancr 590 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝐴) ∈ ℝ)
8180, 77, 72ltdivmuld 12470 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛) ↔ (2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛))))
8279, 81mpbid 235 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛)))
835ad2antrr 725 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 1 < 𝐵)
84 posdif 11122 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
856, 37, 84sylancr 590 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
8683, 85mpbid 235 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < (𝐵 − 1))
8733nnzd 12074 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℤ)
8828a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ∈ ℝ)
896a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 1 ∈ ℝ)
90 0lt1 11151 . . . . . . . . . . . . 13 0 < 1
9190a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < 1)
9288, 89, 37, 91, 83lttrd 10790 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < 𝐵)
93 expgt0 13458 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵𝑛))
9437, 87, 92, 93syl3anc 1368 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < (𝐵𝑛))
9573, 77, 86, 94mulgt0d 10784 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < ((𝐵 − 1) · (𝐵𝑛)))
96 oveq2 7143 . . . . . . . . . . 11 (𝐴 = if(0 ≤ 𝐴, 𝐴, 0) → (2 · 𝐴) = (2 · if(0 ≤ 𝐴, 𝐴, 0)))
9796breq1d 5040 . . . . . . . . . 10 (𝐴 = if(0 ≤ 𝐴, 𝐴, 0) → ((2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛)) ↔ (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛))))
98 2t0e0 11794 . . . . . . . . . . . 12 (2 · 0) = 0
99 oveq2 7143 . . . . . . . . . . . 12 (0 = if(0 ≤ 𝐴, 𝐴, 0) → (2 · 0) = (2 · if(0 ≤ 𝐴, 𝐴, 0)))
10098, 99syl5eqr 2847 . . . . . . . . . . 11 (0 = if(0 ≤ 𝐴, 𝐴, 0) → 0 = (2 · if(0 ≤ 𝐴, 𝐴, 0)))
101100breq1d 5040 . . . . . . . . . 10 (0 = if(0 ≤ 𝐴, 𝐴, 0) → (0 < ((𝐵 − 1) · (𝐵𝑛)) ↔ (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛))))
10297, 101ifboth 4463 . . . . . . . . 9 (((2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛)) ∧ 0 < ((𝐵 − 1) · (𝐵𝑛))) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)))
10382, 95, 102syl2anc 587 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)))
10473, 77remulcld 10660 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝐵𝑛)) ∈ ℝ)
105 simpr 488 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ (ℤ‘(2 · 𝑛)))
106602timesd 11868 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑛) = (𝑛 + 𝑛))
107106fveq2d 6649 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (ℤ‘(2 · 𝑛)) = (ℤ‘(𝑛 + 𝑛)))
108105, 107eleqtrd 2892 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ (ℤ‘(𝑛 + 𝑛)))
109 eluzsub 12262 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(𝑛 + 𝑛))) → (𝑘𝑛) ∈ (ℤ𝑛))
11087, 87, 108, 109syl3anc 1368 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ (ℤ𝑛))
111 eluznn 12306 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝑘𝑛) ∈ (ℤ𝑛)) → (𝑘𝑛) ∈ ℕ)
11233, 110, 111syl2anc 587 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℕ)
113112nngt0d 11674 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < (𝑘𝑛))
114 ltmul1 11479 . . . . . . . . 9 (((2 · if(0 ≤ 𝐴, 𝐴, 0)) ∈ ℝ ∧ ((𝐵 − 1) · (𝐵𝑛)) ∈ ℝ ∧ ((𝑘𝑛) ∈ ℝ ∧ 0 < (𝑘𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)) ↔ ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛))))
11532, 104, 35, 113, 114syl112anc 1371 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)) ↔ ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛))))
116103, 115mpbid 235 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛)))
11773recnd 10658 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵 − 1) ∈ ℂ)
11877recnd 10658 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵𝑛) ∈ ℂ)
119117, 118, 69mul32d 10839 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛)) = (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)))
120116, 119breqtrd 5056 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)))
121 peano2re 10802 . . . . . . . . . 10 (((𝐵 − 1) · (𝑘𝑛)) ∈ ℝ → (((𝐵 − 1) · (𝑘𝑛)) + 1) ∈ ℝ)
12274, 121syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) + 1) ∈ ℝ)
123112nnnn0d 11943 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℕ0)
124 reexpcl 13442 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝑘𝑛) ∈ ℕ0) → (𝐵↑(𝑘𝑛)) ∈ ℝ)
12537, 123, 124syl2anc 587 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵↑(𝑘𝑛)) ∈ ℝ)
12674ltp1d 11559 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) < (((𝐵 − 1) · (𝑘𝑛)) + 1))
12788, 37, 92ltled 10777 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ≤ 𝐵)
128 bernneq2 13587 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝑘𝑛) ∈ ℕ0 ∧ 0 ≤ 𝐵) → (((𝐵 − 1) · (𝑘𝑛)) + 1) ≤ (𝐵↑(𝑘𝑛)))
12937, 123, 127, 128syl3anc 1368 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) + 1) ≤ (𝐵↑(𝑘𝑛)))
13074, 122, 125, 126, 129ltletrd 10789 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) < (𝐵↑(𝑘𝑛)))
13137recnd 10658 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐵 ∈ ℂ)
13292gt0ne0d 11193 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐵 ≠ 0)
133 eluzelz 12241 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘(2 · 𝑛)) → 𝑘 ∈ ℤ)
134133adantl 485 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℤ)
135 expsub 13473 . . . . . . . . 9 (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐵↑(𝑘𝑛)) = ((𝐵𝑘) / (𝐵𝑛)))
136131, 132, 134, 87, 135syl22anc 837 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵↑(𝑘𝑛)) = ((𝐵𝑘) / (𝐵𝑛)))
137130, 136breqtrd 5056 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) < ((𝐵𝑘) / (𝐵𝑛)))
138 ltmuldiv 11502 . . . . . . . 8 ((((𝐵 − 1) · (𝑘𝑛)) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ ∧ ((𝐵𝑛) ∈ ℝ ∧ 0 < (𝐵𝑛))) → ((((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) < (𝐵𝑘) ↔ ((𝐵 − 1) · (𝑘𝑛)) < ((𝐵𝑘) / (𝐵𝑛))))
13974, 40, 77, 94, 138syl112anc 1371 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) < (𝐵𝑘) ↔ ((𝐵 − 1) · (𝑘𝑛)) < ((𝐵𝑘) / (𝐵𝑛))))
140137, 139mpbird 260 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) < (𝐵𝑘))
14136, 78, 40, 120, 140lttrd 10790 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (𝐵𝑘))
14227, 36, 40, 71, 141lelttrd 10787 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) < (𝐵𝑘))
143142ralrimiva 3149 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → ∀𝑘 ∈ (ℤ‘(2 · 𝑛))(𝐴 · 𝑘) < (𝐵𝑘))
144 fveq2 6645 . . . . 5 (𝑗 = (2 · 𝑛) → (ℤ𝑗) = (ℤ‘(2 · 𝑛)))
145144raleqdv 3364 . . . 4 (𝑗 = (2 · 𝑛) → (∀𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘) ↔ ∀𝑘 ∈ (ℤ‘(2 · 𝑛))(𝐴 · 𝑘) < (𝐵𝑘)))
146145rspcev 3571 . . 3 (((2 · 𝑛) ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ‘(2 · 𝑛))(𝐴 · 𝑘) < (𝐵𝑘)) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
14718, 143, 146syl2anc 587 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
14813, 147rexlimddv 3250 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  ifcif 4425   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  +crp 12377  cexp 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-seq 13365  df-exp 13426
This theorem is referenced by:  geomulcvg  15224
  Copyright terms: Public domain W3C validator