Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipid | Structured version Visualization version GIF version |
Description: Utility theorem: index-independent form of df-ip 16686. (Contributed by Mario Carneiro, 6-Oct-2013.) |
Ref | Expression |
---|---|
ipid | ⊢ ·𝑖 = Slot (·𝑖‘ndx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ip 16686 | . 2 ⊢ ·𝑖 = Slot 8 | |
2 | 8nn 11811 | . 2 ⊢ 8 ∈ ℕ | |
3 | 1, 2 | ndxid 16612 | 1 ⊢ ·𝑖 = Slot (·𝑖‘ndx) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ‘cfv 6339 8c8 11777 ndxcnx 16583 Slot cslot 16585 ·𝑖cip 16673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-1cn 10673 ax-addcl 10675 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7173 df-om 7600 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-ndx 16589 df-slot 16590 df-ip 16686 |
This theorem is referenced by: ipsip 16752 phlip 16761 prdsip 16837 imasip 16897 sraip 20074 |
Copyright terms: Public domain | W3C validator |