Step | Hyp | Ref
| Expression |
1 | | aks5lema.1 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ Field) |
2 | | aks5lema.2 |
. . . . . 6
⊢ 𝑃 = (chr‘𝐾) |
3 | | aks5lema.3 |
. . . . . 6
⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁)) |
4 | | aks5lem3a.4 |
. . . . . 6
⊢ 𝐹 = (𝑝 ∈
(Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ (𝐺 ∘ 𝑝)) |
5 | | aks5lem3a.5 |
. . . . . 6
⊢ 𝐺 = (𝑞 ∈
(Base‘(ℤ/nℤ‘𝑁)) ↦ ∪
((ℤRHom‘𝐾)
“ 𝑞)) |
6 | | aks5lem3a.6 |
. . . . . 6
⊢ 𝐻 = (𝑟 ∈
(Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑟)‘𝑀)) |
7 | | aks5lem3a.7 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
8 | 1 | fldcrngd 20713 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ CRing) |
9 | | eqid 2726 |
. . . . . . . . . . . 12
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) |
10 | 9 | crngmgp 20217 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ CRing →
(mulGrp‘𝐾) ∈
CMnd) |
11 | 8, 10 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (mulGrp‘𝐾) ∈ CMnd) |
12 | | aks5lema.11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ ℕ) |
13 | 12 | nnnn0d 12575 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈
ℕ0) |
14 | | eqid 2726 |
. . . . . . . . . 10
⊢
(.g‘(mulGrp‘𝐾)) =
(.g‘(mulGrp‘𝐾)) |
15 | 11, 13, 14 | isprimroot 41802 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑑 ∈ ℕ0
((𝑑(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅 ∥ 𝑑)))) |
16 | 7, 15 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑑 ∈ ℕ0
((𝑑(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅 ∥ 𝑑))) |
17 | 16 | simp1d 1139 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (Base‘(mulGrp‘𝐾))) |
18 | | eqid 2726 |
. . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) |
19 | 9, 18 | mgpbas 20116 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘(mulGrp‘𝐾)) |
20 | 19 | eqcomi 2735 |
. . . . . . 7
⊢
(Base‘(mulGrp‘𝐾)) = (Base‘𝐾) |
21 | 17, 20 | eleqtrdi 2836 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (Base‘𝐾)) |
22 | 1, 2, 3, 4, 5, 6, 21 | aks5lem1 41895 |
. . . . 5
⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈
((Poly1‘(ℤ/nℤ‘𝑁)) RingHom 𝐾)) |
23 | | eqid 2726 |
. . . . . 6
⊢
(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))) =
(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))) |
24 | 23, 9 | rhmmhm 20454 |
. . . . 5
⊢ ((𝐻 ∘ 𝐹) ∈
((Poly1‘(ℤ/nℤ‘𝑁)) RingHom 𝐾) → (𝐻 ∘ 𝐹) ∈
((mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))) MndHom (mulGrp‘𝐾))) |
25 | 22, 24 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈
((mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))) MndHom (mulGrp‘𝐾))) |
26 | 3 | simp2d 1140 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℕ) |
27 | 26 | nnnn0d 12575 |
. . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
28 | | eqid 2726 |
. . . . 5
⊢
(Base‘(Poly1‘(ℤ/nℤ‘𝑁))) =
(Base‘(Poly1‘(ℤ/nℤ‘𝑁))) |
29 | | eqid 2726 |
. . . . 5
⊢
(+g‘(Poly1‘(ℤ/nℤ‘𝑁))) =
(+g‘(Poly1‘(ℤ/nℤ‘𝑁))) |
30 | | eqid 2726 |
. . . . . . . . . 10
⊢
(ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁) |
31 | 30 | zncrng 21535 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (ℤ/nℤ‘𝑁) ∈ CRing) |
32 | 27, 31 | syl 17 |
. . . . . . . 8
⊢ (𝜑 →
(ℤ/nℤ‘𝑁) ∈ CRing) |
33 | | eqid 2726 |
. . . . . . . . 9
⊢
(Poly1‘(ℤ/nℤ‘𝑁)) =
(Poly1‘(ℤ/nℤ‘𝑁)) |
34 | 33 | ply1crng 22181 |
. . . . . . . 8
⊢
((ℤ/nℤ‘𝑁) ∈ CRing →
(Poly1‘(ℤ/nℤ‘𝑁)) ∈ CRing) |
35 | 32, 34 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
(Poly1‘(ℤ/nℤ‘𝑁)) ∈ CRing) |
36 | 35 | crngringd 20222 |
. . . . . 6
⊢ (𝜑 →
(Poly1‘(ℤ/nℤ‘𝑁)) ∈ Ring) |
37 | | ringgrp 20214 |
. . . . . 6
⊢
((Poly1‘(ℤ/nℤ‘𝑁)) ∈ Ring →
(Poly1‘(ℤ/nℤ‘𝑁)) ∈ Grp) |
38 | 36, 37 | syl 17 |
. . . . 5
⊢ (𝜑 →
(Poly1‘(ℤ/nℤ‘𝑁)) ∈ Grp) |
39 | 32 | crngringd 20222 |
. . . . . 6
⊢ (𝜑 →
(ℤ/nℤ‘𝑁) ∈ Ring) |
40 | | eqid 2726 |
. . . . . . 7
⊢
(var1‘(ℤ/nℤ‘𝑁)) =
(var1‘(ℤ/nℤ‘𝑁)) |
41 | 40, 33, 28 | vr1cl 22200 |
. . . . . 6
⊢
((ℤ/nℤ‘𝑁) ∈ Ring →
(var1‘(ℤ/nℤ‘𝑁)) ∈
(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) |
42 | 39, 41 | syl 17 |
. . . . 5
⊢ (𝜑 →
(var1‘(ℤ/nℤ‘𝑁)) ∈
(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) |
43 | | eqid 2726 |
. . . . . . 7
⊢
(algSc‘(Poly1‘(ℤ/nℤ‘𝑁))) =
(algSc‘(Poly1‘(ℤ/nℤ‘𝑁))) |
44 | | eqid 2726 |
. . . . . . 7
⊢
(ℤRHom‘(Poly1‘(ℤ/nℤ‘𝑁))) =
(ℤRHom‘(Poly1‘(ℤ/nℤ‘𝑁))) |
45 | | eqid 2726 |
. . . . . . 7
⊢
(ℤRHom‘(ℤ/nℤ‘𝑁)) =
(ℤRHom‘(ℤ/nℤ‘𝑁)) |
46 | | aks5lem3a.12 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℤ) |
47 | 33, 43, 44, 45, 32, 46 | ply1asclzrhval 41897 |
. . . . . 6
⊢ (𝜑 →
((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)) =
((ℤRHom‘(Poly1‘(ℤ/nℤ‘𝑁)))‘𝐴)) |
48 | 44 | zrhrhm 21494 |
. . . . . . . . 9
⊢
((Poly1‘(ℤ/nℤ‘𝑁)) ∈ Ring →
(ℤRHom‘(Poly1‘(ℤ/nℤ‘𝑁))) ∈
(ℤring RingHom
(Poly1‘(ℤ/nℤ‘𝑁)))) |
49 | | zringbas 21436 |
. . . . . . . . . 10
⊢ ℤ =
(Base‘ℤring) |
50 | 49, 28 | rhmf 20460 |
. . . . . . . . 9
⊢
((ℤRHom‘(Poly1‘(ℤ/nℤ‘𝑁))) ∈ (ℤring
RingHom (Poly1‘(ℤ/nℤ‘𝑁))) →
(ℤRHom‘(Poly1‘(ℤ/nℤ‘𝑁))):ℤ⟶(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) |
51 | 48, 50 | syl 17 |
. . . . . . . 8
⊢
((Poly1‘(ℤ/nℤ‘𝑁)) ∈ Ring →
(ℤRHom‘(Poly1‘(ℤ/nℤ‘𝑁))):ℤ⟶(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) |
52 | 36, 51 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
(ℤRHom‘(Poly1‘(ℤ/nℤ‘𝑁))):ℤ⟶(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) |
53 | 52, 46 | ffvelcdmd 7088 |
. . . . . 6
⊢ (𝜑 →
((ℤRHom‘(Poly1‘(ℤ/nℤ‘𝑁)))‘𝐴) ∈
(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) |
54 | 47, 53 | eqeltrd 2826 |
. . . . 5
⊢ (𝜑 →
((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)) ∈
(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) |
55 | 28, 29, 38, 42, 54 | grpcld 18934 |
. . . 4
⊢ (𝜑 →
((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))
∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) |
56 | 23, 28 | mgpbas 20116 |
. . . . 5
⊢
(Base‘(Poly1‘(ℤ/nℤ‘𝑁))) =
(Base‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁)))) |
57 | | eqid 2726 |
. . . . 5
⊢
(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁)))) =
(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁)))) |
58 | 56, 57, 14 | mhmmulg 19102 |
. . . 4
⊢ (((𝐻 ∘ 𝐹) ∈
((mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))) MndHom (mulGrp‘𝐾)) ∧ 𝑁 ∈ ℕ0 ∧
((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))
∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) → ((𝐻 ∘ 𝐹)‘(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) = (𝑁(.g‘(mulGrp‘𝐾))((𝐻 ∘ 𝐹)‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))) |
59 | 25, 27, 55, 58 | syl3anc 1368 |
. . 3
⊢ (𝜑 → ((𝐻 ∘ 𝐹)‘(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) = (𝑁(.g‘(mulGrp‘𝐾))((𝐻 ∘ 𝐹)‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))) |
60 | | eqid 2726 |
. . . . . . . 8
⊢
(Poly1‘𝐾) = (Poly1‘𝐾) |
61 | 8 | crngringd 20222 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Ring) |
62 | 2 | eqcomi 2735 |
. . . . . . . . . 10
⊢
(chr‘𝐾) =
𝑃 |
63 | 3 | simp1d 1139 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ ℙ) |
64 | | prmnn 16667 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
65 | 63, 64 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ ℕ) |
66 | 65 | nnzd 12628 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℤ) |
67 | 62, 66 | eqeltrid 2830 |
. . . . . . . . 9
⊢ (𝜑 → (chr‘𝐾) ∈
ℤ) |
68 | 62 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (chr‘𝐾) = 𝑃) |
69 | 3 | simp3d 1141 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∥ 𝑁) |
70 | 68, 69 | eqbrtrd 5165 |
. . . . . . . . 9
⊢ (𝜑 → (chr‘𝐾) ∥ 𝑁) |
71 | 61, 26, 67, 70, 30, 5 | zndvdchrrhm 41679 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈
((ℤ/nℤ‘𝑁) RingHom 𝐾)) |
72 | 33, 60, 28, 4, 71 | rhmply1 22371 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈
((Poly1‘(ℤ/nℤ‘𝑁)) RingHom (Poly1‘𝐾))) |
73 | | eqid 2726 |
. . . . . . . 8
⊢
(Base‘(Poly1‘𝐾)) =
(Base‘(Poly1‘𝐾)) |
74 | 28, 73 | rhmf 20460 |
. . . . . . 7
⊢ (𝐹 ∈
((Poly1‘(ℤ/nℤ‘𝑁)) RingHom (Poly1‘𝐾)) → 𝐹:(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))⟶(Base‘(Poly1‘𝐾))) |
75 | 72, 74 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))⟶(Base‘(Poly1‘𝐾))) |
76 | 75, 55 | fvco3d 6991 |
. . . . 5
⊢ (𝜑 → ((𝐻 ∘ 𝐹)‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) =
(𝐻‘(𝐹‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))) |
77 | 6 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐻 = (𝑟 ∈
(Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑟)‘𝑀))) |
78 | | simpr 483 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 = (𝐹‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))
→ 𝑟 = (𝐹‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) |
79 | 78 | fveq2d 6894 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 = (𝐹‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))
→ ((eval1‘𝐾)‘𝑟) = ((eval1‘𝐾)‘(𝐹‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))) |
80 | 79 | fveq1d 6892 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 = (𝐹‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))
→ (((eval1‘𝐾)‘𝑟)‘𝑀) =
(((eval1‘𝐾)‘(𝐹‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))‘𝑀)) |
81 | 75, 55 | ffvelcdmd 7088 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))
∈ (Base‘(Poly1‘𝐾))) |
82 | | fvexd 6905 |
. . . . . . 7
⊢ (𝜑 →
(((eval1‘𝐾)‘(𝐹‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))‘𝑀) ∈
V) |
83 | 77, 80, 81, 82 | fvmptd 7005 |
. . . . . 6
⊢ (𝜑 → (𝐻‘(𝐹‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) =
(((eval1‘𝐾)‘(𝐹‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))‘𝑀)) |
84 | | rhmghm 20459 |
. . . . . . . . . . 11
⊢ (𝐹 ∈
((Poly1‘(ℤ/nℤ‘𝑁)) RingHom (Poly1‘𝐾)) → 𝐹 ∈
((Poly1‘(ℤ/nℤ‘𝑁)) GrpHom (Poly1‘𝐾))) |
85 | 72, 84 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈
((Poly1‘(ℤ/nℤ‘𝑁)) GrpHom (Poly1‘𝐾))) |
86 | | eqid 2726 |
. . . . . . . . . . 11
⊢
(+g‘(Poly1‘𝐾)) =
(+g‘(Poly1‘𝐾)) |
87 | 28, 29, 86 | ghmlin 19208 |
. . . . . . . . . 10
⊢ ((𝐹 ∈
((Poly1‘(ℤ/nℤ‘𝑁)) GrpHom (Poly1‘𝐾)) ∧
(var1‘(ℤ/nℤ‘𝑁)) ∈
(Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ∧
((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)) ∈
(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) → (𝐹‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) =
((𝐹‘(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘𝐾))(𝐹‘((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) |
88 | 85, 42, 54, 87 | syl3anc 1368 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) =
((𝐹‘(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘𝐾))(𝐹‘((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) |
89 | | eqid 2726 |
. . . . . . . . . . 11
⊢
(var1‘𝐾) = (var1‘𝐾) |
90 | 33, 60, 28, 4, 40, 89, 71 | rhmply1vr1 22372 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘(var1‘(ℤ/nℤ‘𝑁))) = (var1‘𝐾)) |
91 | 47 | fveq2d 6894 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹‘((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))) =
(𝐹‘((ℤRHom‘(Poly1‘(ℤ/nℤ‘𝑁)))‘𝐴))) |
92 | | eqid 2726 |
. . . . . . . . . . . . 13
⊢
(ℤRHom‘(Poly1‘𝐾)) =
(ℤRHom‘(Poly1‘𝐾)) |
93 | 72, 46, 44, 92 | rhmzrhval 41678 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹‘((ℤRHom‘(Poly1‘(ℤ/nℤ‘𝑁)))‘𝐴)) =
((ℤRHom‘(Poly1‘𝐾))‘𝐴)) |
94 | 91, 93 | eqtrd 2766 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))) =
((ℤRHom‘(Poly1‘𝐾))‘𝐴)) |
95 | | eqid 2726 |
. . . . . . . . . . . 12
⊢
(algSc‘(Poly1‘𝐾)) =
(algSc‘(Poly1‘𝐾)) |
96 | | eqid 2726 |
. . . . . . . . . . . 12
⊢
(ℤRHom‘𝐾) = (ℤRHom‘𝐾) |
97 | 60, 95, 92, 96, 8, 46 | ply1asclzrhval 41897 |
. . . . . . . . . . 11
⊢ (𝜑 →
((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴)) =
((ℤRHom‘(Poly1‘𝐾))‘𝐴)) |
98 | 94, 97 | eqtr4d 2769 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))) =
((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))) |
99 | 90, 98 | oveq12d 7431 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹‘(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘𝐾))(𝐹‘((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) =
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴)))) |
100 | 88, 99 | eqtrd 2766 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) =
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴)))) |
101 | 100 | fveq2d 6894 |
. . . . . . 7
⊢ (𝜑 →
((eval1‘𝐾)‘(𝐹‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) =
((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))) |
102 | 101 | fveq1d 6892 |
. . . . . 6
⊢ (𝜑 →
(((eval1‘𝐾)‘(𝐹‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))‘𝑀) =
(((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘𝑀)) |
103 | 83, 102 | eqtrd 2766 |
. . . . 5
⊢ (𝜑 → (𝐻‘(𝐹‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) =
(((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘𝑀)) |
104 | 76, 103 | eqtrd 2766 |
. . . 4
⊢ (𝜑 → ((𝐻 ∘ 𝐹)‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) =
(((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘𝑀)) |
105 | 104 | oveq2d 7429 |
. . 3
⊢ (𝜑 → (𝑁(.g‘(mulGrp‘𝐾))((𝐻 ∘ 𝐹)‘((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) =
(𝑁(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘𝑀))) |
106 | 59, 105 | eqtr2d 2767 |
. 2
⊢ (𝜑 → (𝑁(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘𝑀)) = ((𝐻 ∘ 𝐹)‘(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))) |
107 | | eceq1 8762 |
. . . . . . 7
⊢ (𝑢 = (𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) → [𝑢]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿) = [(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) |
108 | 107 | fveq2d 6894 |
. . . . . 6
⊢ (𝑢 = (𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) → (𝐼‘[𝑢]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) = (𝐼‘[(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿))) |
109 | | fveq2 6890 |
. . . . . 6
⊢ (𝑢 = (𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) → ((𝐻 ∘ 𝐹)‘𝑢) = ((𝐻 ∘ 𝐹)‘(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))) |
110 | 108, 109 | eqeq12d 2742 |
. . . . 5
⊢ (𝑢 = (𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) → ((𝐼‘[𝑢]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) = ((𝐻 ∘ 𝐹)‘𝑢) ↔ (𝐼‘[(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) = ((𝐻 ∘ 𝐹)‘(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))))) |
111 | | aks5lem3a.8 |
. . . . . . 7
⊢ 𝐼 = (𝑠 ∈ (Base‘𝐵) ↦ ∪
((𝐻 ∘ 𝐹) “ 𝑠)) |
112 | | aks5lema.9 |
. . . . . . . 8
⊢ 𝐵 = (𝑆 /s (𝑆 ~QG 𝐿)) |
113 | | aks5lema.15 |
. . . . . . . . 9
⊢ 𝑆 =
(Poly1‘(ℤ/nℤ‘𝑁)) |
114 | 113 | oveq1i 7423 |
. . . . . . . . 9
⊢ (𝑆 ~QG 𝐿) =
((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿) |
115 | 113, 114 | oveq12i 7425 |
. . . . . . . 8
⊢ (𝑆 /s (𝑆 ~QG 𝐿)) =
((Poly1‘(ℤ/nℤ‘𝑁)) /s
((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) |
116 | 112, 115 | eqtri 2754 |
. . . . . . 7
⊢ 𝐵 =
((Poly1‘(ℤ/nℤ‘𝑁)) /s
((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) |
117 | | aks5lema.10 |
. . . . . . . 8
⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))}) |
118 | 113 | fveq2i 6893 |
. . . . . . . . 9
⊢
(RSpan‘𝑆) =
(RSpan‘(Poly1‘(ℤ/nℤ‘𝑁))) |
119 | 113 | fveq2i 6893 |
. . . . . . . . . . . . 13
⊢
(mulGrp‘𝑆) =
(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))) |
120 | 119 | fveq2i 6893 |
. . . . . . . . . . . 12
⊢
(.g‘(mulGrp‘𝑆)) =
(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁)))) |
121 | 120 | oveqi 7426 |
. . . . . . . . . . 11
⊢ (𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁))) = (𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))) |
122 | 113 | fveq2i 6893 |
. . . . . . . . . . 11
⊢
(1r‘𝑆) =
(1r‘(Poly1‘(ℤ/nℤ‘𝑁))) |
123 | 113 | fveq2i 6893 |
. . . . . . . . . . 11
⊢
(-g‘𝑆) =
(-g‘(Poly1‘(ℤ/nℤ‘𝑁))) |
124 | 121, 122,
123 | oveq123i 7427 |
. . . . . . . . . 10
⊢ ((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆)) = ((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))) |
125 | 124 | sneqi 4634 |
. . . . . . . . 9
⊢ {((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))} = {((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))} |
126 | 118, 125 | fveq12i 6896 |
. . . . . . . 8
⊢
((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))}) =
((RSpan‘(Poly1‘(ℤ/nℤ‘𝑁)))‘{((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))}) |
127 | 117, 126 | eqtri 2754 |
. . . . . . 7
⊢ 𝐿 =
((RSpan‘(Poly1‘(ℤ/nℤ‘𝑁)))‘{((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))}) |
128 | 1, 2, 3, 4, 5, 6, 7, 111, 116, 127, 12 | aks5lem2 41896 |
. . . . . 6
⊢ (𝜑 → (𝐼 ∈ (𝐵 RingHom 𝐾) ∧ ∀𝑢 ∈
(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝐼‘[𝑢]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) = ((𝐻
∘ 𝐹)‘𝑢))) |
129 | 128 | simprd 494 |
. . . . 5
⊢ (𝜑 → ∀𝑢 ∈
(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝐼‘[𝑢]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) = ((𝐻
∘ 𝐹)‘𝑢)) |
130 | 23 | ringmgp 20215 |
. . . . . . 7
⊢
((Poly1‘(ℤ/nℤ‘𝑁)) ∈ Ring →
(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))) ∈ Mnd) |
131 | 36, 130 | syl 17 |
. . . . . 6
⊢ (𝜑 →
(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))) ∈ Mnd) |
132 | 56, 57, 131, 27, 55 | mulgnn0cld 19082 |
. . . . 5
⊢ (𝜑 → (𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) ∈
(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) |
133 | 110, 129,
132 | rspcdva 3608 |
. . . 4
⊢ (𝜑 → (𝐼‘[(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) = ((𝐻 ∘ 𝐹)‘(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))) |
134 | 133 | eqcomd 2732 |
. . 3
⊢ (𝜑 → ((𝐻 ∘ 𝐹)‘(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) = (𝐼‘[(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿))) |
135 | 113 | eqcomi 2735 |
. . . . . . . . . . 11
⊢
(Poly1‘(ℤ/nℤ‘𝑁)) = 𝑆 |
136 | 135 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 →
(Poly1‘(ℤ/nℤ‘𝑁)) = 𝑆) |
137 | 136 | fveq2d 6894 |
. . . . . . . . 9
⊢ (𝜑 →
(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))) = (mulGrp‘𝑆)) |
138 | 137 | fveq2d 6894 |
. . . . . . . 8
⊢ (𝜑 →
(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁)))) = (.g‘(mulGrp‘𝑆))) |
139 | | eqidd 2727 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 = 𝑁) |
140 | 136 | fveq2d 6894 |
. . . . . . . . 9
⊢ (𝜑 →
(+g‘(Poly1‘(ℤ/nℤ‘𝑁))) = (+g‘𝑆)) |
141 | | eqidd 2727 |
. . . . . . . . 9
⊢ (𝜑 →
(var1‘(ℤ/nℤ‘𝑁)) =
(var1‘(ℤ/nℤ‘𝑁))) |
142 | 136 | fveq2d 6894 |
. . . . . . . . . 10
⊢ (𝜑 →
(algSc‘(Poly1‘(ℤ/nℤ‘𝑁))) = (algSc‘𝑆)) |
143 | 142 | fveq1d 6892 |
. . . . . . . . 9
⊢ (𝜑 →
((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)) = ((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))) |
144 | 140, 141,
143 | oveq123d 7434 |
. . . . . . . 8
⊢ (𝜑 →
((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))) =
((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) |
145 | 138, 139,
144 | oveq123d 7434 |
. . . . . . 7
⊢ (𝜑 → (𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) = (𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) |
146 | 145 | eceq1d 8763 |
. . . . . 6
⊢ (𝜑 → [(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿) = [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) |
147 | 136 | oveq1d 7428 |
. . . . . . 7
⊢ (𝜑 →
((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿) = (𝑆 ~QG 𝐿)) |
148 | 147 | eceq2d 8766 |
. . . . . 6
⊢ (𝜑 → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿) = [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))](𝑆
~QG 𝐿)) |
149 | 146, 148 | eqtrd 2766 |
. . . . 5
⊢ (𝜑 → [(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿) = [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))](𝑆 ~QG 𝐿)) |
150 | | aks5lem3a.13 |
. . . . 5
⊢ (𝜑 → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))](𝑆
~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))](𝑆
~QG 𝐿)) |
151 | | eqcom 2733 |
. . . . . . . . . . 11
⊢
((Poly1‘(ℤ/nℤ‘𝑁)) = 𝑆 ↔ 𝑆 =
(Poly1‘(ℤ/nℤ‘𝑁))) |
152 | 151 | imbi2i 335 |
. . . . . . . . . 10
⊢ ((𝜑 →
(Poly1‘(ℤ/nℤ‘𝑁)) = 𝑆) ↔ (𝜑 → 𝑆 =
(Poly1‘(ℤ/nℤ‘𝑁)))) |
153 | 136, 152 | mpbi 229 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 =
(Poly1‘(ℤ/nℤ‘𝑁))) |
154 | 153 | fveq2d 6894 |
. . . . . . . 8
⊢ (𝜑 → (+g‘𝑆) =
(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))) |
155 | 153 | fveq2d 6894 |
. . . . . . . . . 10
⊢ (𝜑 → (mulGrp‘𝑆) =
(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁)))) |
156 | 155 | fveq2d 6894 |
. . . . . . . . 9
⊢ (𝜑 →
(.g‘(mulGrp‘𝑆)) =
(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))) |
157 | 156 | oveqd 7430 |
. . . . . . . 8
⊢ (𝜑 → (𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁))) = (𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))) |
158 | 153 | fveq2d 6894 |
. . . . . . . . 9
⊢ (𝜑 → (algSc‘𝑆) =
(algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))) |
159 | 158 | fveq1d 6892 |
. . . . . . . 8
⊢ (𝜑 → ((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)) =
((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))) |
160 | 154, 157,
159 | oveq123d 7434 |
. . . . . . 7
⊢ (𝜑 → ((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))) = ((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) |
161 | 160 | eceq1d 8763 |
. . . . . 6
⊢ (𝜑 → [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))](𝑆
~QG 𝐿) = [((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))](𝑆 ~QG 𝐿)) |
162 | 147 | eqcomd 2732 |
. . . . . . 7
⊢ (𝜑 → (𝑆 ~QG 𝐿) =
((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) |
163 | 162 | eceq2d 8766 |
. . . . . 6
⊢ (𝜑 → [((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) |
164 | 161, 163 | eqtrd 2766 |
. . . . 5
⊢ (𝜑 → [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))](𝑆
~QG 𝐿) = [((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) |
165 | 149, 150,
164 | 3eqtrd 2770 |
. . . 4
⊢ (𝜑 → [(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) |
166 | 165 | fveq2d 6894 |
. . 3
⊢ (𝜑 → (𝐼‘[(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) = (𝐼‘[((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿))) |
167 | | eceq1 8762 |
. . . . . 6
⊢ (𝑢 = ((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))) → [𝑢]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) |
168 | 167 | fveq2d 6894 |
. . . . 5
⊢ (𝑢 = ((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))) → (𝐼‘[𝑢]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) = (𝐼‘[((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿))) |
169 | | fveq2 6890 |
. . . . 5
⊢ (𝑢 = ((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))) → ((𝐻 ∘ 𝐹)‘𝑢) = ((𝐻 ∘ 𝐹)‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) |
170 | 168, 169 | eqeq12d 2742 |
. . . 4
⊢ (𝑢 = ((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))) → ((𝐼‘[𝑢]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) = ((𝐻 ∘ 𝐹)‘𝑢) ↔ (𝐼‘[((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) = ((𝐻 ∘ 𝐹)‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))) |
171 | 56, 57, 131, 27, 42 | mulgnn0cld 19082 |
. . . . 5
⊢ (𝜑 → (𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) |
172 | 28, 29, 38, 171, 54 | grpcld 18934 |
. . . 4
⊢ (𝜑 → ((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))) ∈
(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) |
173 | 170, 129,
172 | rspcdva 3608 |
. . 3
⊢ (𝜑 → (𝐼‘[((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) = ((𝐻 ∘ 𝐹)‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) |
174 | 134, 166,
173 | 3eqtrd 2770 |
. 2
⊢ (𝜑 → ((𝐻 ∘ 𝐹)‘(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))((var1‘(ℤ/nℤ‘𝑁))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) = ((𝐻 ∘ 𝐹)‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) |
175 | 75, 172 | fvco3d 6991 |
. . 3
⊢ (𝜑 → ((𝐻 ∘ 𝐹)‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) = (𝐻‘(𝐹‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))) |
176 | | simpr 483 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 = (𝐹‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) → 𝑟 = (𝐹‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) |
177 | 176 | fveq2d 6894 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 = (𝐹‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) →
((eval1‘𝐾)‘𝑟) = ((eval1‘𝐾)‘(𝐹‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))) |
178 | 177 | fveq1d 6892 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 = (𝐹‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) →
(((eval1‘𝐾)‘𝑟)‘𝑀) = (((eval1‘𝐾)‘(𝐹‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))‘𝑀)) |
179 | 75, 172 | ffvelcdmd 7088 |
. . . . 5
⊢ (𝜑 → (𝐹‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) ∈
(Base‘(Poly1‘𝐾))) |
180 | | fvexd 6905 |
. . . . 5
⊢ (𝜑 →
(((eval1‘𝐾)‘(𝐹‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))‘𝑀) ∈ V) |
181 | 77, 178, 179, 180 | fvmptd 7005 |
. . . 4
⊢ (𝜑 → (𝐻‘(𝐹‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) =
(((eval1‘𝐾)‘(𝐹‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))‘𝑀)) |
182 | 28, 29, 86 | ghmlin 19208 |
. . . . . . . 8
⊢ ((𝐹 ∈
((Poly1‘(ℤ/nℤ‘𝑁)) GrpHom (Poly1‘𝐾)) ∧ (𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ∧ ((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)) ∈
(Base‘(Poly1‘(ℤ/nℤ‘𝑁))))
→ (𝐹‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) = ((𝐹‘(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(+g‘(Poly1‘𝐾))(𝐹‘((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) |
183 | 85, 171, 54, 182 | syl3anc 1368 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) = ((𝐹‘(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(+g‘(Poly1‘𝐾))(𝐹‘((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) |
184 | 183 | fveq2d 6894 |
. . . . . 6
⊢ (𝜑 →
((eval1‘𝐾)‘(𝐹‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) =
((eval1‘𝐾)‘((𝐹‘(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(+g‘(Poly1‘𝐾))(𝐹‘((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))) |
185 | 184 | fveq1d 6892 |
. . . . 5
⊢ (𝜑 →
(((eval1‘𝐾)‘(𝐹‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))‘𝑀) = (((eval1‘𝐾)‘((𝐹‘(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(+g‘(Poly1‘𝐾))(𝐹‘((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))‘𝑀)) |
186 | | eqid 2726 |
. . . . . . . . . . . 12
⊢
(mulGrp‘(Poly1‘𝐾)) =
(mulGrp‘(Poly1‘𝐾)) |
187 | 23, 186 | rhmmhm 20454 |
. . . . . . . . . . 11
⊢ (𝐹 ∈
((Poly1‘(ℤ/nℤ‘𝑁)) RingHom (Poly1‘𝐾)) → 𝐹 ∈
((mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))) MndHom
(mulGrp‘(Poly1‘𝐾)))) |
188 | 72, 187 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈
((mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))) MndHom
(mulGrp‘(Poly1‘𝐾)))) |
189 | | eqid 2726 |
. . . . . . . . . . 11
⊢
(.g‘(mulGrp‘(Poly1‘𝐾))) =
(.g‘(mulGrp‘(Poly1‘𝐾))) |
190 | 56, 57, 189 | mhmmulg 19102 |
. . . . . . . . . 10
⊢ ((𝐹 ∈
((mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))) MndHom
(mulGrp‘(Poly1‘𝐾))) ∧ 𝑁 ∈ ℕ0 ∧
(var1‘(ℤ/nℤ‘𝑁)) ∈
(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) → (𝐹‘(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))) = (𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(𝐹‘(var1‘(ℤ/nℤ‘𝑁))))) |
191 | 188, 27, 42, 190 | syl3anc 1368 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))) = (𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(𝐹‘(var1‘(ℤ/nℤ‘𝑁))))) |
192 | 191, 91 | oveq12d 7431 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹‘(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(+g‘(Poly1‘𝐾))(𝐹‘((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) = ((𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(𝐹‘(var1‘(ℤ/nℤ‘𝑁))))(+g‘(Poly1‘𝐾))(𝐹‘((ℤRHom‘(Poly1‘(ℤ/nℤ‘𝑁)))‘𝐴)))) |
193 | 192 | fveq2d 6894 |
. . . . . . 7
⊢ (𝜑 →
((eval1‘𝐾)‘((𝐹‘(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(+g‘(Poly1‘𝐾))(𝐹‘((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) =
((eval1‘𝐾)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(𝐹‘(var1‘(ℤ/nℤ‘𝑁))))(+g‘(Poly1‘𝐾))(𝐹‘((ℤRHom‘(Poly1‘(ℤ/nℤ‘𝑁)))‘𝐴))))) |
194 | 193 | fveq1d 6892 |
. . . . . 6
⊢ (𝜑 →
(((eval1‘𝐾)‘((𝐹‘(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(+g‘(Poly1‘𝐾))(𝐹‘((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))‘𝑀) = (((eval1‘𝐾)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(𝐹‘(var1‘(ℤ/nℤ‘𝑁))))(+g‘(Poly1‘𝐾))(𝐹‘((ℤRHom‘(Poly1‘(ℤ/nℤ‘𝑁)))‘𝐴))))‘𝑀)) |
195 | 90 | oveq2d 7429 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(𝐹‘(var1‘(ℤ/nℤ‘𝑁)))) = (𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(var1‘𝐾))) |
196 | 195, 93 | oveq12d 7431 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(𝐹‘(var1‘(ℤ/nℤ‘𝑁))))(+g‘(Poly1‘𝐾))(𝐹‘((ℤRHom‘(Poly1‘(ℤ/nℤ‘𝑁)))‘𝐴))) =
((𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(var1‘𝐾))(+g‘(Poly1‘𝐾))((ℤRHom‘(Poly1‘𝐾))‘𝐴))) |
197 | 196 | fveq2d 6894 |
. . . . . . . . 9
⊢ (𝜑 →
((eval1‘𝐾)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(𝐹‘(var1‘(ℤ/nℤ‘𝑁))))(+g‘(Poly1‘𝐾))(𝐹‘((ℤRHom‘(Poly1‘(ℤ/nℤ‘𝑁)))‘𝐴)))) =
((eval1‘𝐾)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(var1‘𝐾))(+g‘(Poly1‘𝐾))((ℤRHom‘(Poly1‘𝐾))‘𝐴)))) |
198 | 197 | fveq1d 6892 |
. . . . . . . 8
⊢ (𝜑 →
(((eval1‘𝐾)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(𝐹‘(var1‘(ℤ/nℤ‘𝑁))))(+g‘(Poly1‘𝐾))(𝐹‘((ℤRHom‘(Poly1‘(ℤ/nℤ‘𝑁)))‘𝐴))))‘𝑀) =
(((eval1‘𝐾)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(var1‘𝐾))(+g‘(Poly1‘𝐾))((ℤRHom‘(Poly1‘𝐾))‘𝐴)))‘𝑀)) |
199 | | eqid 2726 |
. . . . . . . . . . 11
⊢
(eval1‘𝐾) = (eval1‘𝐾) |
200 | 199, 89, 18, 60, 73, 8, 21 | evl1vard 22322 |
. . . . . . . . . . . 12
⊢ (𝜑 →
((var1‘𝐾)
∈ (Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘(var1‘𝐾))‘𝑀) = 𝑀)) |
201 | 199, 60, 18, 73, 8, 21, 200, 189, 14, 27 | evl1expd 22330 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(var1‘𝐾)) ∈ (Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘(𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(var1‘𝐾)))‘𝑀)
= (𝑁(.g‘(mulGrp‘𝐾))𝑀))) |
202 | 60 | ply1crng 22181 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ CRing →
(Poly1‘𝐾)
∈ CRing) |
203 | 8, 202 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(Poly1‘𝐾)
∈ CRing) |
204 | 203 | crngringd 20222 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(Poly1‘𝐾)
∈ Ring) |
205 | 92 | zrhrhm 21494 |
. . . . . . . . . . . . . . 15
⊢
((Poly1‘𝐾) ∈ Ring →
(ℤRHom‘(Poly1‘𝐾)) ∈ (ℤring RingHom
(Poly1‘𝐾))) |
206 | 49, 73 | rhmf 20460 |
. . . . . . . . . . . . . . 15
⊢
((ℤRHom‘(Poly1‘𝐾)) ∈ (ℤring RingHom
(Poly1‘𝐾))
→ (ℤRHom‘(Poly1‘𝐾)):ℤ⟶(Base‘(Poly1‘𝐾))) |
207 | 205, 206 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((Poly1‘𝐾) ∈ Ring →
(ℤRHom‘(Poly1‘𝐾)):ℤ⟶(Base‘(Poly1‘𝐾))) |
208 | 204, 207 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(ℤRHom‘(Poly1‘𝐾)):ℤ⟶(Base‘(Poly1‘𝐾))) |
209 | 208, 46 | ffvelcdmd 7088 |
. . . . . . . . . . . 12
⊢ (𝜑 →
((ℤRHom‘(Poly1‘𝐾))‘𝐴) ∈
(Base‘(Poly1‘𝐾))) |
210 | | eqidd 2727 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(((eval1‘𝐾)‘((ℤRHom‘(Poly1‘𝐾))‘𝐴))‘𝑀) = (((eval1‘𝐾)‘((ℤRHom‘(Poly1‘𝐾))‘𝐴))‘𝑀)) |
211 | 209, 210 | jca 510 |
. . . . . . . . . . 11
⊢ (𝜑 →
(((ℤRHom‘(Poly1‘𝐾))‘𝐴) ∈
(Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘((ℤRHom‘(Poly1‘𝐾))‘𝐴))‘𝑀) = (((eval1‘𝐾)‘((ℤRHom‘(Poly1‘𝐾))‘𝐴))‘𝑀))) |
212 | | eqid 2726 |
. . . . . . . . . . 11
⊢
(+g‘𝐾) = (+g‘𝐾) |
213 | 199, 60, 18, 73, 8, 21, 201, 211, 86, 212 | evl1addd 22326 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(var1‘𝐾))(+g‘(Poly1‘𝐾))((ℤRHom‘(Poly1‘𝐾))‘𝐴))
∈ (Base‘(Poly1‘𝐾))
∧ (((eval1‘𝐾)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(var1‘𝐾))(+g‘(Poly1‘𝐾))((ℤRHom‘(Poly1‘𝐾))‘𝐴)))‘𝑀)
= ((𝑁(.g‘(mulGrp‘𝐾))𝑀)(+g‘𝐾)(((eval1‘𝐾)‘((ℤRHom‘(Poly1‘𝐾))‘𝐴))‘𝑀)))) |
214 | 213 | simprd 494 |
. . . . . . . . 9
⊢ (𝜑 →
(((eval1‘𝐾)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(var1‘𝐾))(+g‘(Poly1‘𝐾))((ℤRHom‘(Poly1‘𝐾))‘𝐴)))‘𝑀)
= ((𝑁(.g‘(mulGrp‘𝐾))𝑀)(+g‘𝐾)(((eval1‘𝐾)‘((ℤRHom‘(Poly1‘𝐾))‘𝐴))‘𝑀))) |
215 | 96 | zrhrhm 21494 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ Ring →
(ℤRHom‘𝐾)
∈ (ℤring RingHom 𝐾)) |
216 | 49, 18 | rhmf 20460 |
. . . . . . . . . . . . . . . . 17
⊢
((ℤRHom‘𝐾) ∈ (ℤring RingHom
𝐾) →
(ℤRHom‘𝐾):ℤ⟶(Base‘𝐾)) |
217 | 215, 216 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ Ring →
(ℤRHom‘𝐾):ℤ⟶(Base‘𝐾)) |
218 | 61, 217 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾)) |
219 | 218, 46 | ffvelcdmd 7088 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((ℤRHom‘𝐾)‘𝐴) ∈ (Base‘𝐾)) |
220 | 199, 60, 18, 95, 73, 8, 219, 21 | evl1scad 22320 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴)) ∈
(Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴)))‘𝑀) = ((ℤRHom‘𝐾)‘𝐴))) |
221 | 220 | simprd 494 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(((eval1‘𝐾)‘((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴)))‘𝑀) = ((ℤRHom‘𝐾)‘𝐴)) |
222 | 221 | eqcomd 2732 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℤRHom‘𝐾)‘𝐴) = (((eval1‘𝐾)‘((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴)))‘𝑀)) |
223 | 97 | fveq2d 6894 |
. . . . . . . . . . . 12
⊢ (𝜑 →
((eval1‘𝐾)‘((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))) = ((eval1‘𝐾)‘((ℤRHom‘(Poly1‘𝐾))‘𝐴))) |
224 | 223 | fveq1d 6892 |
. . . . . . . . . . 11
⊢ (𝜑 →
(((eval1‘𝐾)‘((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴)))‘𝑀) = (((eval1‘𝐾)‘((ℤRHom‘(Poly1‘𝐾))‘𝐴))‘𝑀)) |
225 | 222, 224 | eqtr2d 2767 |
. . . . . . . . . 10
⊢ (𝜑 →
(((eval1‘𝐾)‘((ℤRHom‘(Poly1‘𝐾))‘𝐴))‘𝑀) = ((ℤRHom‘𝐾)‘𝐴)) |
226 | 225 | oveq2d 7429 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁(.g‘(mulGrp‘𝐾))𝑀)(+g‘𝐾)(((eval1‘𝐾)‘((ℤRHom‘(Poly1‘𝐾))‘𝐴))‘𝑀)) = ((𝑁(.g‘(mulGrp‘𝐾))𝑀)(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴))) |
227 | 214, 226 | eqtrd 2766 |
. . . . . . . 8
⊢ (𝜑 →
(((eval1‘𝐾)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(var1‘𝐾))(+g‘(Poly1‘𝐾))((ℤRHom‘(Poly1‘𝐾))‘𝐴)))‘𝑀)
= ((𝑁(.g‘(mulGrp‘𝐾))𝑀)(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴))) |
228 | 198, 227 | eqtrd 2766 |
. . . . . . 7
⊢ (𝜑 →
(((eval1‘𝐾)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(𝐹‘(var1‘(ℤ/nℤ‘𝑁))))(+g‘(Poly1‘𝐾))(𝐹‘((ℤRHom‘(Poly1‘(ℤ/nℤ‘𝑁)))‘𝐴))))‘𝑀) = ((𝑁(.g‘(mulGrp‘𝐾))𝑀)(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴))) |
229 | 11 | cmnmndd 19795 |
. . . . . . . . . 10
⊢ (𝜑 → (mulGrp‘𝐾) ∈ Mnd) |
230 | 19, 14, 229, 27, 21 | mulgnn0cld 19082 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁(.g‘(mulGrp‘𝐾))𝑀) ∈ (Base‘𝐾)) |
231 | 199, 89, 18, 60, 73, 8, 230 | evl1vard 22322 |
. . . . . . . . 9
⊢ (𝜑 →
((var1‘𝐾)
∈ (Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘(var1‘𝐾))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀)) = (𝑁(.g‘(mulGrp‘𝐾))𝑀))) |
232 | 199, 60, 18, 95, 73, 8, 219, 230 | evl1scad 22320 |
. . . . . . . . 9
⊢ (𝜑 →
(((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴)) ∈
(Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴)))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀)) = ((ℤRHom‘𝐾)‘𝐴))) |
233 | 199, 60, 18, 73, 8, 230, 231, 232, 86, 212 | evl1addd 22326 |
. . . . . . . 8
⊢ (𝜑 →
(((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))) ∈
(Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀)) = ((𝑁(.g‘(mulGrp‘𝐾))𝑀)(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴)))) |
234 | 233 | simprd 494 |
. . . . . . 7
⊢ (𝜑 →
(((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀)) = ((𝑁(.g‘(mulGrp‘𝐾))𝑀)(+g‘𝐾)((ℤRHom‘𝐾)‘𝐴))) |
235 | 228, 234 | eqtr4d 2769 |
. . . . . 6
⊢ (𝜑 →
(((eval1‘𝐾)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝐾)))(𝐹‘(var1‘(ℤ/nℤ‘𝑁))))(+g‘(Poly1‘𝐾))(𝐹‘((ℤRHom‘(Poly1‘(ℤ/nℤ‘𝑁)))‘𝐴))))‘𝑀) =
(((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀))) |
236 | 194, 235 | eqtrd 2766 |
. . . . 5
⊢ (𝜑 →
(((eval1‘𝐾)‘((𝐹‘(𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(+g‘(Poly1‘𝐾))(𝐹‘((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))‘𝑀) = (((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀))) |
237 | 185, 236 | eqtrd 2766 |
. . . 4
⊢ (𝜑 →
(((eval1‘𝐾)‘(𝐹‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))))‘𝑀) = (((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀))) |
238 | 181, 237 | eqtrd 2766 |
. . 3
⊢ (𝜑 → (𝐻‘(𝐹‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))) =
(((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀))) |
239 | 175, 238 | eqtrd 2766 |
. 2
⊢ (𝜑 → ((𝐻 ∘ 𝐹)‘((𝑁(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(+g‘(Poly1‘(ℤ/nℤ‘𝑁)))((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))) =
(((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀))) |
240 | 106, 174,
239 | 3eqtrd 2770 |
1
⊢ (𝜑 → (𝑁(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘𝑀)) = (((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀))) |