Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks5lem2 Structured version   Visualization version   GIF version

Theorem aks5lem2 42200
Description: Lemma for section 5 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. Construct the quotient for the AKS reduction. (Contributed by metakunt, 7-Jun-2025.)
Hypotheses
Ref Expression
aks5lem1.1 (𝜑𝐾 ∈ Field)
aks5lem1.2 𝑃 = (chr‘𝐾)
aks5lem1.3 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))
aks5lem1.4 𝐹 = (𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ (𝐺𝑝))
aks5lem1.5 𝐺 = (𝑞 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑞))
aks5lem1.6 𝐻 = (𝑟 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑟)‘𝑀))
aks5lem2.1 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks5lem2.2 𝐼 = (𝑠 ∈ (Base‘𝐴) ↦ ((𝐻𝐹) “ 𝑠))
aks5lem2.3 𝐴 = ((Poly1‘(ℤ/nℤ‘𝑁)) /s ((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿))
aks5lem2.4 𝐿 = ((RSpan‘(Poly1‘(ℤ/nℤ‘𝑁)))‘{((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))})
aks5lem2.5 (𝜑𝑅 ∈ ℕ)
Assertion
Ref Expression
aks5lem2 (𝜑 → (𝐼 ∈ (𝐴 RingHom 𝐾) ∧ ∀𝑔 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝐼‘[𝑔]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) = ((𝐻𝐹)‘𝑔)))
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   𝐺,𝑝   𝐻,𝑠   𝐼,𝑠   𝐾,𝑝   𝐾,𝑞   𝐾,𝑟   𝐾,𝑠   𝐿,𝑠   𝑀,𝑟   𝑁,𝑝   𝑁,𝑞   𝑁,𝑠   𝑅,𝑝   𝑅,𝑟   𝜑,𝑔,𝑠   𝜑,𝑝   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑞)   𝐴(𝑔,𝑟,𝑞,𝑝)   𝑃(𝑔,𝑠,𝑟,𝑞,𝑝)   𝑅(𝑔,𝑠,𝑞)   𝐹(𝑔,𝑟,𝑞,𝑝)   𝐺(𝑔,𝑠,𝑟,𝑞)   𝐻(𝑔,𝑟,𝑞,𝑝)   𝐼(𝑔,𝑟,𝑞,𝑝)   𝐾(𝑔)   𝐿(𝑔,𝑟,𝑞,𝑝)   𝑀(𝑔,𝑠,𝑞,𝑝)   𝑁(𝑔,𝑟)

Proof of Theorem aks5lem2
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . 2 (0g𝐾) = (0g𝐾)
2 aks5lem1.1 . . 3 (𝜑𝐾 ∈ Field)
3 aks5lem1.2 . . 3 𝑃 = (chr‘𝐾)
4 aks5lem1.3 . . 3 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))
5 aks5lem1.4 . . 3 𝐹 = (𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ (𝐺𝑝))
6 aks5lem1.5 . . 3 𝐺 = (𝑞 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑞))
7 aks5lem1.6 . . 3 𝐻 = (𝑟 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑟)‘𝑀))
8 aks5lem2.1 . . . . . 6 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
92fldcrngd 20702 . . . . . . . 8 (𝜑𝐾 ∈ CRing)
10 eqid 2735 . . . . . . . . 9 (mulGrp‘𝐾) = (mulGrp‘𝐾)
1110crngmgp 20201 . . . . . . . 8 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
129, 11syl 17 . . . . . . 7 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
13 aks5lem2.5 . . . . . . . 8 (𝜑𝑅 ∈ ℕ)
1413nnnn0d 12562 . . . . . . 7 (𝜑𝑅 ∈ ℕ0)
15 eqid 2735 . . . . . . 7 (.g‘(mulGrp‘𝐾)) = (.g‘(mulGrp‘𝐾))
1612, 14, 15isprimroot 42106 . . . . . 6 (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑙))))
178, 16mpbid 232 . . . . 5 (𝜑 → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑙)))
1817simp1d 1142 . . . 4 (𝜑𝑀 ∈ (Base‘(mulGrp‘𝐾)))
19 eqid 2735 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2010, 19mgpbas 20105 . . . . 5 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
2120eqcomi 2744 . . . 4 (Base‘(mulGrp‘𝐾)) = (Base‘𝐾)
2218, 21eleqtrdi 2844 . . 3 (𝜑𝑀 ∈ (Base‘𝐾))
232, 3, 4, 5, 6, 7, 22aks5lem1 42199 . 2 (𝜑 → (𝐻𝐹) ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom 𝐾))
24 eqid 2735 . 2 ((𝐻𝐹) “ {(0g𝐾)}) = ((𝐻𝐹) “ {(0g𝐾)})
25 aks5lem2.3 . 2 𝐴 = ((Poly1‘(ℤ/nℤ‘𝑁)) /s ((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿))
26 aks5lem2.2 . 2 𝐼 = (𝑠 ∈ (Base‘𝐴) ↦ ((𝐻𝐹) “ 𝑠))
274simp2d 1143 . . . . 5 (𝜑𝑁 ∈ ℕ)
2827nnnn0d 12562 . . . 4 (𝜑𝑁 ∈ ℕ0)
29 eqid 2735 . . . . 5 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
3029zncrng 21505 . . . 4 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing)
3128, 30syl 17 . . 3 (𝜑 → (ℤ/nℤ‘𝑁) ∈ CRing)
32 eqid 2735 . . . 4 (Poly1‘(ℤ/nℤ‘𝑁)) = (Poly1‘(ℤ/nℤ‘𝑁))
3332ply1crng 22134 . . 3 ((ℤ/nℤ‘𝑁) ∈ CRing → (Poly1‘(ℤ/nℤ‘𝑁)) ∈ CRing)
3431, 33syl 17 . 2 (𝜑 → (Poly1‘(ℤ/nℤ‘𝑁)) ∈ CRing)
35 aks5lem2.4 . 2 𝐿 = ((RSpan‘(Poly1‘(ℤ/nℤ‘𝑁)))‘{((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))})
3634crnggrpd 20207 . . 3 (𝜑 → (Poly1‘(ℤ/nℤ‘𝑁)) ∈ Grp)
37 eqid 2735 . . . . 5 (mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))) = (mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁)))
38 eqid 2735 . . . . 5 (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) = (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))
3937, 38mgpbas 20105 . . . 4 (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) = (Base‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))
40 eqid 2735 . . . 4 (.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁)))) = (.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))
4134crngringd 20206 . . . . 5 (𝜑 → (Poly1‘(ℤ/nℤ‘𝑁)) ∈ Ring)
4237ringmgp 20199 . . . . 5 ((Poly1‘(ℤ/nℤ‘𝑁)) ∈ Ring → (mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))) ∈ Mnd)
4341, 42syl 17 . . . 4 (𝜑 → (mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))) ∈ Mnd)
4431crngringd 20206 . . . . 5 (𝜑 → (ℤ/nℤ‘𝑁) ∈ Ring)
45 eqid 2735 . . . . . 6 (var1‘(ℤ/nℤ‘𝑁)) = (var1‘(ℤ/nℤ‘𝑁))
4645, 32, 38vr1cl 22153 . . . . 5 ((ℤ/nℤ‘𝑁) ∈ Ring → (var1‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))))
4744, 46syl 17 . . . 4 (𝜑 → (var1‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))))
4839, 40, 43, 14, 47mulgnn0cld 19078 . . 3 (𝜑 → (𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))))
49 eqid 2735 . . . . 5 (1r‘(Poly1‘(ℤ/nℤ‘𝑁))) = (1r‘(Poly1‘(ℤ/nℤ‘𝑁)))
5038, 49ringidcl 20225 . . . 4 ((Poly1‘(ℤ/nℤ‘𝑁)) ∈ Ring → (1r‘(Poly1‘(ℤ/nℤ‘𝑁))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))))
5141, 50syl 17 . . 3 (𝜑 → (1r‘(Poly1‘(ℤ/nℤ‘𝑁))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))))
52 eqid 2735 . . . 4 (-g‘(Poly1‘(ℤ/nℤ‘𝑁))) = (-g‘(Poly1‘(ℤ/nℤ‘𝑁)))
5338, 52grpsubcl 19003 . . 3 (((Poly1‘(ℤ/nℤ‘𝑁)) ∈ Grp ∧ (𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ∧ (1r‘(Poly1‘(ℤ/nℤ‘𝑁))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) → ((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))))
5436, 48, 51, 53syl3anc 1373 . 2 (𝜑 → ((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))))
55 fvexd 6891 . . . . . . . . . 10 (𝜑 → (Base‘(ℤ/nℤ‘𝑁)) ∈ V)
5655mptexd 7216 . . . . . . . . 9 (𝜑 → (𝑞 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑞)) ∈ V)
576, 56eqeltrid 2838 . . . . . . . 8 (𝜑𝐺 ∈ V)
5857adantr 480 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) → 𝐺 ∈ V)
59 vex 3463 . . . . . . . 8 𝑝 ∈ V
6059a1i 11 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) → 𝑝 ∈ V)
6158, 60coexd 7927 . . . . . 6 ((𝜑𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) → (𝐺𝑝) ∈ V)
6261, 5fmptd 7104 . . . . 5 (𝜑𝐹:(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))⟶V)
6362ffund 6710 . . . 4 (𝜑 → Fun 𝐹)
6462fdmd 6716 . . . . 5 (𝜑 → dom 𝐹 = (Base‘(Poly1‘(ℤ/nℤ‘𝑁))))
6554, 64eleqtrrd 2837 . . . 4 (𝜑 → ((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))) ∈ dom 𝐹)
66 fvco 6977 . . . 4 ((Fun 𝐹 ∧ ((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))) ∈ dom 𝐹) → ((𝐻𝐹)‘((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))) = (𝐻‘(𝐹‘((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))))
6763, 65, 66syl2anc 584 . . 3 (𝜑 → ((𝐻𝐹)‘((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))) = (𝐻‘(𝐹‘((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))))
68 eqid 2735 . . . . . . . 8 (Poly1𝐾) = (Poly1𝐾)
699crngringd 20206 . . . . . . . . 9 (𝜑𝐾 ∈ Ring)
704simp1d 1142 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
71 prmnn 16693 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
7270, 71syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
733, 72eqeltrrid 2839 . . . . . . . . . 10 (𝜑 → (chr‘𝐾) ∈ ℕ)
7473nnzd 12615 . . . . . . . . 9 (𝜑 → (chr‘𝐾) ∈ ℤ)
754simp3d 1144 . . . . . . . . . 10 (𝜑𝑃𝑁)
763, 75eqbrtrrid 5155 . . . . . . . . 9 (𝜑 → (chr‘𝐾) ∥ 𝑁)
7769, 27, 74, 76, 29, 6zndvdchrrhm 41985 . . . . . . . 8 (𝜑𝐺 ∈ ((ℤ/nℤ‘𝑁) RingHom 𝐾))
7832, 68, 38, 5, 77rhmply1 22324 . . . . . . 7 (𝜑𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom (Poly1𝐾)))
79 rhmghm 20444 . . . . . . 7 (𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom (Poly1𝐾)) → 𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) GrpHom (Poly1𝐾)))
8078, 79syl 17 . . . . . 6 (𝜑𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) GrpHom (Poly1𝐾)))
81 eqid 2735 . . . . . . 7 (-g‘(Poly1𝐾)) = (-g‘(Poly1𝐾))
8238, 52, 81ghmsub 19207 . . . . . 6 ((𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) GrpHom (Poly1𝐾)) ∧ (𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ∧ (1r‘(Poly1‘(ℤ/nℤ‘𝑁))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) → (𝐹‘((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))) = ((𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(-g‘(Poly1𝐾))(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))))
8380, 48, 51, 82syl3anc 1373 . . . . 5 (𝜑 → (𝐹‘((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))) = ((𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(-g‘(Poly1𝐾))(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))))
8483fveq2d 6880 . . . 4 (𝜑 → (𝐻‘(𝐹‘((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))) = (𝐻‘((𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(-g‘(Poly1𝐾))(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))))
85 eqid 2735 . . . . . . . 8 (eval1𝐾) = (eval1𝐾)
86 eqid 2735 . . . . . . . 8 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
8785, 68, 19, 86, 9, 22, 7evl1maprhm 22317 . . . . . . 7 (𝜑𝐻 ∈ ((Poly1𝐾) RingHom 𝐾))
88 rhmghm 20444 . . . . . . 7 (𝐻 ∈ ((Poly1𝐾) RingHom 𝐾) → 𝐻 ∈ ((Poly1𝐾) GrpHom 𝐾))
8987, 88syl 17 . . . . . 6 (𝜑𝐻 ∈ ((Poly1𝐾) GrpHom 𝐾))
9038, 86rhmf 20445 . . . . . . . 8 (𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom (Poly1𝐾)) → 𝐹:(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))⟶(Base‘(Poly1𝐾)))
9178, 90syl 17 . . . . . . 7 (𝜑𝐹:(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))⟶(Base‘(Poly1𝐾)))
9291, 48ffvelcdmd 7075 . . . . . 6 (𝜑 → (𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))) ∈ (Base‘(Poly1𝐾)))
9391, 51ffvelcdmd 7075 . . . . . 6 (𝜑 → (𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))) ∈ (Base‘(Poly1𝐾)))
94 eqid 2735 . . . . . . 7 (-g𝐾) = (-g𝐾)
9586, 81, 94ghmsub 19207 . . . . . 6 ((𝐻 ∈ ((Poly1𝐾) GrpHom 𝐾) ∧ (𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))) ∈ (Base‘(Poly1𝐾)) ∧ (𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))) ∈ (Base‘(Poly1𝐾))) → (𝐻‘((𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(-g‘(Poly1𝐾))(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))) = ((𝐻‘(𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))(-g𝐾)(𝐻‘(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))))
9689, 92, 93, 95syl3anc 1373 . . . . 5 (𝜑 → (𝐻‘((𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(-g‘(Poly1𝐾))(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))) = ((𝐻‘(𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))(-g𝐾)(𝐻‘(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))))
97 eqid 2735 . . . . . . . . . . . . . . . . 17 (.r‘(Poly1‘(ℤ/nℤ‘𝑁))) = (.r‘(Poly1‘(ℤ/nℤ‘𝑁)))
9838, 97, 49, 41, 48ringlidmd 20232 . . . . . . . . . . . . . . . 16 (𝜑 → ((1r‘(Poly1‘(ℤ/nℤ‘𝑁)))(.r‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))) = (𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))
9998eqcomd 2741 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))) = ((1r‘(Poly1‘(ℤ/nℤ‘𝑁)))(.r‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))
10031elexd 3483 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (ℤ/nℤ‘𝑁) ∈ V)
10132ply1sca 22188 . . . . . . . . . . . . . . . . . . . . 21 ((ℤ/nℤ‘𝑁) ∈ V → (ℤ/nℤ‘𝑁) = (Scalar‘(Poly1‘(ℤ/nℤ‘𝑁))))
102100, 101syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℤ/nℤ‘𝑁) = (Scalar‘(Poly1‘(ℤ/nℤ‘𝑁))))
103102fveq2d 6880 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(Scalar‘(Poly1‘(ℤ/nℤ‘𝑁)))))
104103fveq2d 6880 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘(1r‘(ℤ/nℤ‘𝑁))) = ((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘(1r‘(Scalar‘(Poly1‘(ℤ/nℤ‘𝑁))))))
105 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (algSc‘(Poly1‘(ℤ/nℤ‘𝑁))) = (algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))
106 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (Scalar‘(Poly1‘(ℤ/nℤ‘𝑁))) = (Scalar‘(Poly1‘(ℤ/nℤ‘𝑁)))
10732ply1lmod 22187 . . . . . . . . . . . . . . . . . . . 20 ((ℤ/nℤ‘𝑁) ∈ Ring → (Poly1‘(ℤ/nℤ‘𝑁)) ∈ LMod)
10844, 107syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Poly1‘(ℤ/nℤ‘𝑁)) ∈ LMod)
109105, 106, 108, 41ascl1 21845 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘(1r‘(Scalar‘(Poly1‘(ℤ/nℤ‘𝑁))))) = (1r‘(Poly1‘(ℤ/nℤ‘𝑁))))
110104, 109eqtrd 2770 . . . . . . . . . . . . . . . . 17 (𝜑 → ((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘(1r‘(ℤ/nℤ‘𝑁))) = (1r‘(Poly1‘(ℤ/nℤ‘𝑁))))
111110eqcomd 2741 . . . . . . . . . . . . . . . 16 (𝜑 → (1r‘(Poly1‘(ℤ/nℤ‘𝑁))) = ((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘(1r‘(ℤ/nℤ‘𝑁))))
112111oveq1d 7420 . . . . . . . . . . . . . . 15 (𝜑 → ((1r‘(Poly1‘(ℤ/nℤ‘𝑁)))(.r‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))) = (((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘(1r‘(ℤ/nℤ‘𝑁)))(.r‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))
11399, 112eqtrd 2770 . . . . . . . . . . . . . 14 (𝜑 → (𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))) = (((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘(1r‘(ℤ/nℤ‘𝑁)))(.r‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))
11432ply1assa 22135 . . . . . . . . . . . . . . . 16 ((ℤ/nℤ‘𝑁) ∈ CRing → (Poly1‘(ℤ/nℤ‘𝑁)) ∈ AssAlg)
11531, 114syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (Poly1‘(ℤ/nℤ‘𝑁)) ∈ AssAlg)
116 eqid 2735 . . . . . . . . . . . . . . . . . 18 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
117 eqid 2735 . . . . . . . . . . . . . . . . . 18 (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(ℤ/nℤ‘𝑁))
118116, 117ringidcl 20225 . . . . . . . . . . . . . . . . 17 ((ℤ/nℤ‘𝑁) ∈ Ring → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
11944, 118syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
120102fveq2d 6880 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(Scalar‘(Poly1‘(ℤ/nℤ‘𝑁)))))
121119, 120eleqtrd 2836 . . . . . . . . . . . . . . 15 (𝜑 → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(Scalar‘(Poly1‘(ℤ/nℤ‘𝑁)))))
122 eqid 2735 . . . . . . . . . . . . . . . 16 (Base‘(Scalar‘(Poly1‘(ℤ/nℤ‘𝑁)))) = (Base‘(Scalar‘(Poly1‘(ℤ/nℤ‘𝑁))))
123 eqid 2735 . . . . . . . . . . . . . . . 16 ( ·𝑠 ‘(Poly1‘(ℤ/nℤ‘𝑁))) = ( ·𝑠 ‘(Poly1‘(ℤ/nℤ‘𝑁)))
124105, 106, 122, 38, 97, 123asclmul1 21846 . . . . . . . . . . . . . . 15 (((Poly1‘(ℤ/nℤ‘𝑁)) ∈ AssAlg ∧ (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(Scalar‘(Poly1‘(ℤ/nℤ‘𝑁)))) ∧ (𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) → (((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘(1r‘(ℤ/nℤ‘𝑁)))(.r‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))) = ((1r‘(ℤ/nℤ‘𝑁))( ·𝑠 ‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))
125115, 121, 48, 124syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘(1r‘(ℤ/nℤ‘𝑁)))(.r‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))) = ((1r‘(ℤ/nℤ‘𝑁))( ·𝑠 ‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))
126113, 125eqtrd 2770 . . . . . . . . . . . . 13 (𝜑 → (𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))) = ((1r‘(ℤ/nℤ‘𝑁))( ·𝑠 ‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))
127126fveq2d 6880 . . . . . . . . . . . 12 (𝜑 → (𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))) = (𝐹‘((1r‘(ℤ/nℤ‘𝑁))( ·𝑠 ‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))))
128 eqid 2735 . . . . . . . . . . . . 13 (var1𝐾) = (var1𝐾)
129 eqid 2735 . . . . . . . . . . . . 13 ( ·𝑠 ‘(Poly1𝐾)) = ( ·𝑠 ‘(Poly1𝐾))
130 eqid 2735 . . . . . . . . . . . . 13 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
131 eqid 2735 . . . . . . . . . . . . 13 (.g‘(mulGrp‘(Poly1𝐾))) = (.g‘(mulGrp‘(Poly1𝐾)))
13232, 68, 38, 116, 5, 45, 128, 123, 129, 37, 130, 40, 131, 77, 119, 14rhmply1mon 22327 . . . . . . . . . . . 12 (𝜑 → (𝐹‘((1r‘(ℤ/nℤ‘𝑁))( ·𝑠 ‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))) = ((𝐺‘(1r‘(ℤ/nℤ‘𝑁)))( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
133127, 132eqtrd 2770 . . . . . . . . . . 11 (𝜑 → (𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))) = ((𝐺‘(1r‘(ℤ/nℤ‘𝑁)))( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
134133fveq2d 6880 . . . . . . . . . 10 (𝜑 → (𝐻‘(𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))) = (𝐻‘((𝐺‘(1r‘(ℤ/nℤ‘𝑁)))( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))))
135 eqid 2735 . . . . . . . . . . . . . . 15 (1r𝐾) = (1r𝐾)
136117, 135rhm1 20449 . . . . . . . . . . . . . 14 (𝐺 ∈ ((ℤ/nℤ‘𝑁) RingHom 𝐾) → (𝐺‘(1r‘(ℤ/nℤ‘𝑁))) = (1r𝐾))
13777, 136syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐺‘(1r‘(ℤ/nℤ‘𝑁))) = (1r𝐾))
138137oveq1d 7420 . . . . . . . . . . . 12 (𝜑 → ((𝐺‘(1r‘(ℤ/nℤ‘𝑁)))( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = ((1r𝐾)( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
139138fveq2d 6880 . . . . . . . . . . 11 (𝜑 → (𝐻‘((𝐺‘(1r‘(ℤ/nℤ‘𝑁)))( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))) = (𝐻‘((1r𝐾)( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))))
14068ply1assa 22135 . . . . . . . . . . . . . . . 16 (𝐾 ∈ CRing → (Poly1𝐾) ∈ AssAlg)
1419, 140syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (Poly1𝐾) ∈ AssAlg)
14219, 135ringidcl 20225 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Ring → (1r𝐾) ∈ (Base‘𝐾))
14369, 142syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝐾) ∈ (Base‘𝐾))
14468ply1sca 22188 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Field → 𝐾 = (Scalar‘(Poly1𝐾)))
1452, 144syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 = (Scalar‘(Poly1𝐾)))
146145fveq2d 6880 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘(Poly1𝐾))))
147143, 146eleqtrd 2836 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝐾) ∈ (Base‘(Scalar‘(Poly1𝐾))))
148130, 86mgpbas 20105 . . . . . . . . . . . . . . . 16 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
14968ply1crng 22134 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ CRing → (Poly1𝐾) ∈ CRing)
1509, 149syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Poly1𝐾) ∈ CRing)
151 crngring 20205 . . . . . . . . . . . . . . . . . 18 ((Poly1𝐾) ∈ CRing → (Poly1𝐾) ∈ Ring)
152150, 151syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (Poly1𝐾) ∈ Ring)
153130ringmgp 20199 . . . . . . . . . . . . . . . . 17 ((Poly1𝐾) ∈ Ring → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
154152, 153syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
155128, 68, 86vr1cl 22153 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Ring → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
15669, 155syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
157148, 131, 154, 14, 156mulgnn0cld 19078 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)) ∈ (Base‘(Poly1𝐾)))
158 eqid 2735 . . . . . . . . . . . . . . . 16 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
159 eqid 2735 . . . . . . . . . . . . . . . 16 (Scalar‘(Poly1𝐾)) = (Scalar‘(Poly1𝐾))
160 eqid 2735 . . . . . . . . . . . . . . . 16 (Base‘(Scalar‘(Poly1𝐾))) = (Base‘(Scalar‘(Poly1𝐾)))
161 eqid 2735 . . . . . . . . . . . . . . . 16 (.r‘(Poly1𝐾)) = (.r‘(Poly1𝐾))
162158, 159, 160, 86, 161, 129asclmul1 21846 . . . . . . . . . . . . . . 15 (((Poly1𝐾) ∈ AssAlg ∧ (1r𝐾) ∈ (Base‘(Scalar‘(Poly1𝐾))) ∧ (𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)) ∈ (Base‘(Poly1𝐾))) → (((algSc‘(Poly1𝐾))‘(1r𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = ((1r𝐾)( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
163141, 147, 157, 162syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (((algSc‘(Poly1𝐾))‘(1r𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = ((1r𝐾)( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
164163eqcomd 2741 . . . . . . . . . . . . 13 (𝜑 → ((1r𝐾)( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = (((algSc‘(Poly1𝐾))‘(1r𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
165164fveq2d 6880 . . . . . . . . . . . 12 (𝜑 → (𝐻‘((1r𝐾)( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))) = (𝐻‘(((algSc‘(Poly1𝐾))‘(1r𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))))
166 eqid 2735 . . . . . . . . . . . . . . . 16 (1r‘(Poly1𝐾)) = (1r‘(Poly1𝐾))
16768, 158, 135, 166, 69ply1ascl1 22191 . . . . . . . . . . . . . . 15 (𝜑 → ((algSc‘(Poly1𝐾))‘(1r𝐾)) = (1r‘(Poly1𝐾)))
168167oveq1d 7420 . . . . . . . . . . . . . 14 (𝜑 → (((algSc‘(Poly1𝐾))‘(1r𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = ((1r‘(Poly1𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
169168fveq2d 6880 . . . . . . . . . . . . 13 (𝜑 → (𝐻‘(((algSc‘(Poly1𝐾))‘(1r𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))) = (𝐻‘((1r‘(Poly1𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))))
17086, 161, 166, 152, 157ringlidmd 20232 . . . . . . . . . . . . . . 15 (𝜑 → ((1r‘(Poly1𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = (𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))
171170fveq2d 6880 . . . . . . . . . . . . . 14 (𝜑 → (𝐻‘((1r‘(Poly1𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))) = (𝐻‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
1727a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐻 = (𝑟 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑟)‘𝑀)))
173 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 = (𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) → 𝑟 = (𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))
174173fveq2d 6880 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 = (𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) → ((eval1𝐾)‘𝑟) = ((eval1𝐾)‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
175174fveq1d 6878 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 = (𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) → (((eval1𝐾)‘𝑟)‘𝑀) = (((eval1𝐾)‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))‘𝑀))
176 fvexd 6891 . . . . . . . . . . . . . . . 16 (𝜑 → (((eval1𝐾)‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))‘𝑀) ∈ V)
177172, 175, 157, 176fvmptd 6993 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = (((eval1𝐾)‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))‘𝑀))
17885, 128, 19, 68, 86, 9, 22evl1vard 22275 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((var1𝐾) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(var1𝐾))‘𝑀) = 𝑀))
17985, 68, 19, 86, 9, 22, 178, 131, 15, 14evl1expd 22283 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))‘𝑀) = (𝑅(.g‘(mulGrp‘𝐾))𝑀)))
180179simprd 495 . . . . . . . . . . . . . . . 16 (𝜑 → (((eval1𝐾)‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))‘𝑀) = (𝑅(.g‘(mulGrp‘𝐾))𝑀))
18117simp2d 1143 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)))
18210, 135ringidval 20143 . . . . . . . . . . . . . . . . . . 19 (1r𝐾) = (0g‘(mulGrp‘𝐾))
183182eqcomi 2744 . . . . . . . . . . . . . . . . . 18 (0g‘(mulGrp‘𝐾)) = (1r𝐾)
184183a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g‘(mulGrp‘𝐾)) = (1r𝐾))
185181, 184eqtrd 2770 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (1r𝐾))
186180, 185eqtrd 2770 . . . . . . . . . . . . . . 15 (𝜑 → (((eval1𝐾)‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))‘𝑀) = (1r𝐾))
187177, 186eqtrd 2770 . . . . . . . . . . . . . 14 (𝜑 → (𝐻‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = (1r𝐾))
188171, 187eqtrd 2770 . . . . . . . . . . . . 13 (𝜑 → (𝐻‘((1r‘(Poly1𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))) = (1r𝐾))
189169, 188eqtrd 2770 . . . . . . . . . . . 12 (𝜑 → (𝐻‘(((algSc‘(Poly1𝐾))‘(1r𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))) = (1r𝐾))
190165, 189eqtrd 2770 . . . . . . . . . . 11 (𝜑 → (𝐻‘((1r𝐾)( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))) = (1r𝐾))
191139, 190eqtrd 2770 . . . . . . . . . 10 (𝜑 → (𝐻‘((𝐺‘(1r‘(ℤ/nℤ‘𝑁)))( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))) = (1r𝐾))
192134, 191eqtrd 2770 . . . . . . . . 9 (𝜑 → (𝐻‘(𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))) = (1r𝐾))
193166, 135rhm1 20449 . . . . . . . . . . 11 (𝐻 ∈ ((Poly1𝐾) RingHom 𝐾) → (𝐻‘(1r‘(Poly1𝐾))) = (1r𝐾))
19487, 193syl 17 . . . . . . . . . 10 (𝜑 → (𝐻‘(1r‘(Poly1𝐾))) = (1r𝐾))
195194eqcomd 2741 . . . . . . . . 9 (𝜑 → (1r𝐾) = (𝐻‘(1r‘(Poly1𝐾))))
196192, 195eqtrd 2770 . . . . . . . 8 (𝜑 → (𝐻‘(𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))) = (𝐻‘(1r‘(Poly1𝐾))))
197196, 194eqtrd 2770 . . . . . . 7 (𝜑 → (𝐻‘(𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))) = (1r𝐾))
19849, 166rhm1 20449 . . . . . . . . . 10 (𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom (Poly1𝐾)) → (𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))) = (1r‘(Poly1𝐾)))
19978, 198syl 17 . . . . . . . . 9 (𝜑 → (𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))) = (1r‘(Poly1𝐾)))
200199fveq2d 6880 . . . . . . . 8 (𝜑 → (𝐻‘(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))) = (𝐻‘(1r‘(Poly1𝐾))))
201200, 194eqtrd 2770 . . . . . . 7 (𝜑 → (𝐻‘(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))) = (1r𝐾))
202197, 201oveq12d 7423 . . . . . 6 (𝜑 → ((𝐻‘(𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))(-g𝐾)(𝐻‘(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))) = ((1r𝐾)(-g𝐾)(1r𝐾)))
20369ringgrpd 20202 . . . . . . 7 (𝜑𝐾 ∈ Grp)
20419, 1, 94grpsubid 19007 . . . . . . 7 ((𝐾 ∈ Grp ∧ (1r𝐾) ∈ (Base‘𝐾)) → ((1r𝐾)(-g𝐾)(1r𝐾)) = (0g𝐾))
205203, 143, 204syl2anc 584 . . . . . 6 (𝜑 → ((1r𝐾)(-g𝐾)(1r𝐾)) = (0g𝐾))
206202, 205eqtrd 2770 . . . . 5 (𝜑 → ((𝐻‘(𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))(-g𝐾)(𝐻‘(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))) = (0g𝐾))
20796, 206eqtrd 2770 . . . 4 (𝜑 → (𝐻‘((𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(-g‘(Poly1𝐾))(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))) = (0g𝐾))
20884, 207eqtrd 2770 . . 3 (𝜑 → (𝐻‘(𝐹‘((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))) = (0g𝐾))
20967, 208eqtrd 2770 . 2 (𝜑 → ((𝐻𝐹)‘((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))) = (0g𝐾))
2101, 23, 24, 25, 26, 34, 35, 54, 209rhmqusspan 42198 1 (𝜑 → (𝐼 ∈ (𝐴 RingHom 𝐾) ∧ ∀𝑔 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝐼‘[𝑔]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) = ((𝐻𝐹)‘𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  {csn 4601   cuni 4883   class class class wbr 5119  cmpt 5201  ccnv 5653  dom cdm 5654  cima 5657  ccom 5658  Fun wfun 6525  wf 6527  cfv 6531  (class class class)co 7405  [cec 8717  cn 12240  0cn0 12501  cdvds 16272  cprime 16690  Basecbs 17228  .rcmulr 17272  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453   /s cqus 17519  Mndcmnd 18712  Grpcgrp 18916  -gcsg 18918  .gcmg 19050   ~QG cqg 19105   GrpHom cghm 19195  CMndccmn 19761  mulGrpcmgp 20100  1rcur 20141  Ringcrg 20193  CRingccrg 20194   RingHom crh 20429  Fieldcfield 20690  LModclmod 20817  RSpancrsp 21168  ℤRHomczrh 21460  chrcchr 21462  ℤ/nczn 21463  AssAlgcasa 21810  algSccascl 21812  var1cv1 22111  Poly1cpl1 22112  eval1ce1 22252   PrimRoots cprimroots 42104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-prm 16691  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-imas 17522  df-qus 17523  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-cntz 19300  df-od 19509  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-field 20692  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-2idl 21211  df-cnfld 21316  df-zring 21408  df-zrh 21464  df-chr 21466  df-zn 21467  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-evls 22032  df-evl 22033  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-evls1 22253  df-evl1 22254  df-primroots 42105
This theorem is referenced by:  aks5lem3a  42202
  Copyright terms: Public domain W3C validator