Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks5lem2 Structured version   Visualization version   GIF version

Theorem aks5lem2 42144
Description: Lemma for section 5 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. Construct the quotient for the AKS reduction. (Contributed by metakunt, 7-Jun-2025.)
Hypotheses
Ref Expression
aks5lem1.1 (𝜑𝐾 ∈ Field)
aks5lem1.2 𝑃 = (chr‘𝐾)
aks5lem1.3 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))
aks5lem1.4 𝐹 = (𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ (𝐺𝑝))
aks5lem1.5 𝐺 = (𝑞 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑞))
aks5lem1.6 𝐻 = (𝑟 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑟)‘𝑀))
aks5lem2.1 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks5lem2.2 𝐼 = (𝑠 ∈ (Base‘𝐴) ↦ ((𝐻𝐹) “ 𝑠))
aks5lem2.3 𝐴 = ((Poly1‘(ℤ/nℤ‘𝑁)) /s ((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿))
aks5lem2.4 𝐿 = ((RSpan‘(Poly1‘(ℤ/nℤ‘𝑁)))‘{((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))})
aks5lem2.5 (𝜑𝑅 ∈ ℕ)
Assertion
Ref Expression
aks5lem2 (𝜑 → (𝐼 ∈ (𝐴 RingHom 𝐾) ∧ ∀𝑔 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝐼‘[𝑔]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) = ((𝐻𝐹)‘𝑔)))
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   𝐺,𝑝   𝐻,𝑠   𝐼,𝑠   𝐾,𝑝   𝐾,𝑞   𝐾,𝑟   𝐾,𝑠   𝐿,𝑠   𝑀,𝑟   𝑁,𝑝   𝑁,𝑞   𝑁,𝑠   𝑅,𝑝   𝑅,𝑟   𝜑,𝑔,𝑠   𝜑,𝑝   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑞)   𝐴(𝑔,𝑟,𝑞,𝑝)   𝑃(𝑔,𝑠,𝑟,𝑞,𝑝)   𝑅(𝑔,𝑠,𝑞)   𝐹(𝑔,𝑟,𝑞,𝑝)   𝐺(𝑔,𝑠,𝑟,𝑞)   𝐻(𝑔,𝑟,𝑞,𝑝)   𝐼(𝑔,𝑟,𝑞,𝑝)   𝐾(𝑔)   𝐿(𝑔,𝑟,𝑞,𝑝)   𝑀(𝑔,𝑠,𝑞,𝑝)   𝑁(𝑔,𝑟)

Proof of Theorem aks5lem2
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . 2 (0g𝐾) = (0g𝐾)
2 aks5lem1.1 . . 3 (𝜑𝐾 ∈ Field)
3 aks5lem1.2 . . 3 𝑃 = (chr‘𝐾)
4 aks5lem1.3 . . 3 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))
5 aks5lem1.4 . . 3 𝐹 = (𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ (𝐺𝑝))
6 aks5lem1.5 . . 3 𝐺 = (𝑞 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑞))
7 aks5lem1.6 . . 3 𝐻 = (𝑟 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑟)‘𝑀))
8 aks5lem2.1 . . . . . 6 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
92fldcrngd 20764 . . . . . . . 8 (𝜑𝐾 ∈ CRing)
10 eqid 2740 . . . . . . . . 9 (mulGrp‘𝐾) = (mulGrp‘𝐾)
1110crngmgp 20268 . . . . . . . 8 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
129, 11syl 17 . . . . . . 7 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
13 aks5lem2.5 . . . . . . . 8 (𝜑𝑅 ∈ ℕ)
1413nnnn0d 12613 . . . . . . 7 (𝜑𝑅 ∈ ℕ0)
15 eqid 2740 . . . . . . 7 (.g‘(mulGrp‘𝐾)) = (.g‘(mulGrp‘𝐾))
1612, 14, 15isprimroot 42050 . . . . . 6 (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑙))))
178, 16mpbid 232 . . . . 5 (𝜑 → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑙)))
1817simp1d 1142 . . . 4 (𝜑𝑀 ∈ (Base‘(mulGrp‘𝐾)))
19 eqid 2740 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2010, 19mgpbas 20167 . . . . 5 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
2120eqcomi 2749 . . . 4 (Base‘(mulGrp‘𝐾)) = (Base‘𝐾)
2218, 21eleqtrdi 2854 . . 3 (𝜑𝑀 ∈ (Base‘𝐾))
232, 3, 4, 5, 6, 7, 22aks5lem1 42143 . 2 (𝜑 → (𝐻𝐹) ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom 𝐾))
24 eqid 2740 . 2 ((𝐻𝐹) “ {(0g𝐾)}) = ((𝐻𝐹) “ {(0g𝐾)})
25 aks5lem2.3 . 2 𝐴 = ((Poly1‘(ℤ/nℤ‘𝑁)) /s ((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿))
26 aks5lem2.2 . 2 𝐼 = (𝑠 ∈ (Base‘𝐴) ↦ ((𝐻𝐹) “ 𝑠))
274simp2d 1143 . . . . 5 (𝜑𝑁 ∈ ℕ)
2827nnnn0d 12613 . . . 4 (𝜑𝑁 ∈ ℕ0)
29 eqid 2740 . . . . 5 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
3029zncrng 21586 . . . 4 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing)
3128, 30syl 17 . . 3 (𝜑 → (ℤ/nℤ‘𝑁) ∈ CRing)
32 eqid 2740 . . . 4 (Poly1‘(ℤ/nℤ‘𝑁)) = (Poly1‘(ℤ/nℤ‘𝑁))
3332ply1crng 22221 . . 3 ((ℤ/nℤ‘𝑁) ∈ CRing → (Poly1‘(ℤ/nℤ‘𝑁)) ∈ CRing)
3431, 33syl 17 . 2 (𝜑 → (Poly1‘(ℤ/nℤ‘𝑁)) ∈ CRing)
35 aks5lem2.4 . 2 𝐿 = ((RSpan‘(Poly1‘(ℤ/nℤ‘𝑁)))‘{((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))})
3634crnggrpd 20274 . . 3 (𝜑 → (Poly1‘(ℤ/nℤ‘𝑁)) ∈ Grp)
37 eqid 2740 . . . . 5 (mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))) = (mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁)))
38 eqid 2740 . . . . 5 (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) = (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))
3937, 38mgpbas 20167 . . . 4 (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) = (Base‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))
40 eqid 2740 . . . 4 (.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁)))) = (.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))
4134crngringd 20273 . . . . 5 (𝜑 → (Poly1‘(ℤ/nℤ‘𝑁)) ∈ Ring)
4237ringmgp 20266 . . . . 5 ((Poly1‘(ℤ/nℤ‘𝑁)) ∈ Ring → (mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))) ∈ Mnd)
4341, 42syl 17 . . . 4 (𝜑 → (mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))) ∈ Mnd)
4431crngringd 20273 . . . . 5 (𝜑 → (ℤ/nℤ‘𝑁) ∈ Ring)
45 eqid 2740 . . . . . 6 (var1‘(ℤ/nℤ‘𝑁)) = (var1‘(ℤ/nℤ‘𝑁))
4645, 32, 38vr1cl 22240 . . . . 5 ((ℤ/nℤ‘𝑁) ∈ Ring → (var1‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))))
4744, 46syl 17 . . . 4 (𝜑 → (var1‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))))
4839, 40, 43, 14, 47mulgnn0cld 19135 . . 3 (𝜑 → (𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))))
49 eqid 2740 . . . . 5 (1r‘(Poly1‘(ℤ/nℤ‘𝑁))) = (1r‘(Poly1‘(ℤ/nℤ‘𝑁)))
5038, 49ringidcl 20289 . . . 4 ((Poly1‘(ℤ/nℤ‘𝑁)) ∈ Ring → (1r‘(Poly1‘(ℤ/nℤ‘𝑁))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))))
5141, 50syl 17 . . 3 (𝜑 → (1r‘(Poly1‘(ℤ/nℤ‘𝑁))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))))
52 eqid 2740 . . . 4 (-g‘(Poly1‘(ℤ/nℤ‘𝑁))) = (-g‘(Poly1‘(ℤ/nℤ‘𝑁)))
5338, 52grpsubcl 19060 . . 3 (((Poly1‘(ℤ/nℤ‘𝑁)) ∈ Grp ∧ (𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ∧ (1r‘(Poly1‘(ℤ/nℤ‘𝑁))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) → ((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))))
5436, 48, 51, 53syl3anc 1371 . 2 (𝜑 → ((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))))
55 fvexd 6935 . . . . . . . . . 10 (𝜑 → (Base‘(ℤ/nℤ‘𝑁)) ∈ V)
5655mptexd 7261 . . . . . . . . 9 (𝜑 → (𝑞 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑞)) ∈ V)
576, 56eqeltrid 2848 . . . . . . . 8 (𝜑𝐺 ∈ V)
5857adantr 480 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) → 𝐺 ∈ V)
59 vex 3492 . . . . . . . 8 𝑝 ∈ V
6059a1i 11 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) → 𝑝 ∈ V)
6158, 60coexd 7971 . . . . . 6 ((𝜑𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) → (𝐺𝑝) ∈ V)
6261, 5fmptd 7148 . . . . 5 (𝜑𝐹:(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))⟶V)
6362ffund 6751 . . . 4 (𝜑 → Fun 𝐹)
6462fdmd 6757 . . . . 5 (𝜑 → dom 𝐹 = (Base‘(Poly1‘(ℤ/nℤ‘𝑁))))
6554, 64eleqtrrd 2847 . . . 4 (𝜑 → ((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))) ∈ dom 𝐹)
66 fvco 7020 . . . 4 ((Fun 𝐹 ∧ ((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))) ∈ dom 𝐹) → ((𝐻𝐹)‘((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))) = (𝐻‘(𝐹‘((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))))
6763, 65, 66syl2anc 583 . . 3 (𝜑 → ((𝐻𝐹)‘((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))) = (𝐻‘(𝐹‘((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))))
68 eqid 2740 . . . . . . . 8 (Poly1𝐾) = (Poly1𝐾)
699crngringd 20273 . . . . . . . . 9 (𝜑𝐾 ∈ Ring)
704simp1d 1142 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
71 prmnn 16721 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
7270, 71syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
733, 72eqeltrrid 2849 . . . . . . . . . 10 (𝜑 → (chr‘𝐾) ∈ ℕ)
7473nnzd 12666 . . . . . . . . 9 (𝜑 → (chr‘𝐾) ∈ ℤ)
754simp3d 1144 . . . . . . . . . 10 (𝜑𝑃𝑁)
763, 75eqbrtrrid 5202 . . . . . . . . 9 (𝜑 → (chr‘𝐾) ∥ 𝑁)
7769, 27, 74, 76, 29, 6zndvdchrrhm 41927 . . . . . . . 8 (𝜑𝐺 ∈ ((ℤ/nℤ‘𝑁) RingHom 𝐾))
7832, 68, 38, 5, 77rhmply1 22411 . . . . . . 7 (𝜑𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom (Poly1𝐾)))
79 rhmghm 20510 . . . . . . 7 (𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom (Poly1𝐾)) → 𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) GrpHom (Poly1𝐾)))
8078, 79syl 17 . . . . . 6 (𝜑𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) GrpHom (Poly1𝐾)))
81 eqid 2740 . . . . . . 7 (-g‘(Poly1𝐾)) = (-g‘(Poly1𝐾))
8238, 52, 81ghmsub 19264 . . . . . 6 ((𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) GrpHom (Poly1𝐾)) ∧ (𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ∧ (1r‘(Poly1‘(ℤ/nℤ‘𝑁))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) → (𝐹‘((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))) = ((𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(-g‘(Poly1𝐾))(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))))
8380, 48, 51, 82syl3anc 1371 . . . . 5 (𝜑 → (𝐹‘((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))) = ((𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(-g‘(Poly1𝐾))(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))))
8483fveq2d 6924 . . . 4 (𝜑 → (𝐻‘(𝐹‘((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))) = (𝐻‘((𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(-g‘(Poly1𝐾))(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))))
85 eqid 2740 . . . . . . . 8 (eval1𝐾) = (eval1𝐾)
86 eqid 2740 . . . . . . . 8 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
8785, 68, 19, 86, 9, 22, 7evl1maprhm 22404 . . . . . . 7 (𝜑𝐻 ∈ ((Poly1𝐾) RingHom 𝐾))
88 rhmghm 20510 . . . . . . 7 (𝐻 ∈ ((Poly1𝐾) RingHom 𝐾) → 𝐻 ∈ ((Poly1𝐾) GrpHom 𝐾))
8987, 88syl 17 . . . . . 6 (𝜑𝐻 ∈ ((Poly1𝐾) GrpHom 𝐾))
9038, 86rhmf 20511 . . . . . . . 8 (𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom (Poly1𝐾)) → 𝐹:(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))⟶(Base‘(Poly1𝐾)))
9178, 90syl 17 . . . . . . 7 (𝜑𝐹:(Base‘(Poly1‘(ℤ/nℤ‘𝑁)))⟶(Base‘(Poly1𝐾)))
9291, 48ffvelcdmd 7119 . . . . . 6 (𝜑 → (𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))) ∈ (Base‘(Poly1𝐾)))
9391, 51ffvelcdmd 7119 . . . . . 6 (𝜑 → (𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))) ∈ (Base‘(Poly1𝐾)))
94 eqid 2740 . . . . . . 7 (-g𝐾) = (-g𝐾)
9586, 81, 94ghmsub 19264 . . . . . 6 ((𝐻 ∈ ((Poly1𝐾) GrpHom 𝐾) ∧ (𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))) ∈ (Base‘(Poly1𝐾)) ∧ (𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))) ∈ (Base‘(Poly1𝐾))) → (𝐻‘((𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(-g‘(Poly1𝐾))(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))) = ((𝐻‘(𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))(-g𝐾)(𝐻‘(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))))
9689, 92, 93, 95syl3anc 1371 . . . . 5 (𝜑 → (𝐻‘((𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(-g‘(Poly1𝐾))(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))) = ((𝐻‘(𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))(-g𝐾)(𝐻‘(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))))
97 eqid 2740 . . . . . . . . . . . . . . . . 17 (.r‘(Poly1‘(ℤ/nℤ‘𝑁))) = (.r‘(Poly1‘(ℤ/nℤ‘𝑁)))
9838, 97, 49, 41, 48ringlidmd 20295 . . . . . . . . . . . . . . . 16 (𝜑 → ((1r‘(Poly1‘(ℤ/nℤ‘𝑁)))(.r‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))) = (𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))
9998eqcomd 2746 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))) = ((1r‘(Poly1‘(ℤ/nℤ‘𝑁)))(.r‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))
10031elexd 3512 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (ℤ/nℤ‘𝑁) ∈ V)
10132ply1sca 22275 . . . . . . . . . . . . . . . . . . . . 21 ((ℤ/nℤ‘𝑁) ∈ V → (ℤ/nℤ‘𝑁) = (Scalar‘(Poly1‘(ℤ/nℤ‘𝑁))))
102100, 101syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℤ/nℤ‘𝑁) = (Scalar‘(Poly1‘(ℤ/nℤ‘𝑁))))
103102fveq2d 6924 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(Scalar‘(Poly1‘(ℤ/nℤ‘𝑁)))))
104103fveq2d 6924 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘(1r‘(ℤ/nℤ‘𝑁))) = ((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘(1r‘(Scalar‘(Poly1‘(ℤ/nℤ‘𝑁))))))
105 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (algSc‘(Poly1‘(ℤ/nℤ‘𝑁))) = (algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))
106 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (Scalar‘(Poly1‘(ℤ/nℤ‘𝑁))) = (Scalar‘(Poly1‘(ℤ/nℤ‘𝑁)))
10732ply1lmod 22274 . . . . . . . . . . . . . . . . . . . 20 ((ℤ/nℤ‘𝑁) ∈ Ring → (Poly1‘(ℤ/nℤ‘𝑁)) ∈ LMod)
10844, 107syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Poly1‘(ℤ/nℤ‘𝑁)) ∈ LMod)
109105, 106, 108, 41ascl1 21928 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘(1r‘(Scalar‘(Poly1‘(ℤ/nℤ‘𝑁))))) = (1r‘(Poly1‘(ℤ/nℤ‘𝑁))))
110104, 109eqtrd 2780 . . . . . . . . . . . . . . . . 17 (𝜑 → ((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘(1r‘(ℤ/nℤ‘𝑁))) = (1r‘(Poly1‘(ℤ/nℤ‘𝑁))))
111110eqcomd 2746 . . . . . . . . . . . . . . . 16 (𝜑 → (1r‘(Poly1‘(ℤ/nℤ‘𝑁))) = ((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘(1r‘(ℤ/nℤ‘𝑁))))
112111oveq1d 7463 . . . . . . . . . . . . . . 15 (𝜑 → ((1r‘(Poly1‘(ℤ/nℤ‘𝑁)))(.r‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))) = (((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘(1r‘(ℤ/nℤ‘𝑁)))(.r‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))
11399, 112eqtrd 2780 . . . . . . . . . . . . . 14 (𝜑 → (𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))) = (((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘(1r‘(ℤ/nℤ‘𝑁)))(.r‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))
11432ply1assa 22222 . . . . . . . . . . . . . . . 16 ((ℤ/nℤ‘𝑁) ∈ CRing → (Poly1‘(ℤ/nℤ‘𝑁)) ∈ AssAlg)
11531, 114syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (Poly1‘(ℤ/nℤ‘𝑁)) ∈ AssAlg)
116 eqid 2740 . . . . . . . . . . . . . . . . . 18 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
117 eqid 2740 . . . . . . . . . . . . . . . . . 18 (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(ℤ/nℤ‘𝑁))
118116, 117ringidcl 20289 . . . . . . . . . . . . . . . . 17 ((ℤ/nℤ‘𝑁) ∈ Ring → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
11944, 118syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
120102fveq2d 6924 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(Scalar‘(Poly1‘(ℤ/nℤ‘𝑁)))))
121119, 120eleqtrd 2846 . . . . . . . . . . . . . . 15 (𝜑 → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(Scalar‘(Poly1‘(ℤ/nℤ‘𝑁)))))
122 eqid 2740 . . . . . . . . . . . . . . . 16 (Base‘(Scalar‘(Poly1‘(ℤ/nℤ‘𝑁)))) = (Base‘(Scalar‘(Poly1‘(ℤ/nℤ‘𝑁))))
123 eqid 2740 . . . . . . . . . . . . . . . 16 ( ·𝑠 ‘(Poly1‘(ℤ/nℤ‘𝑁))) = ( ·𝑠 ‘(Poly1‘(ℤ/nℤ‘𝑁)))
124105, 106, 122, 38, 97, 123asclmul1 21929 . . . . . . . . . . . . . . 15 (((Poly1‘(ℤ/nℤ‘𝑁)) ∈ AssAlg ∧ (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(Scalar‘(Poly1‘(ℤ/nℤ‘𝑁)))) ∧ (𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))) ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))) → (((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘(1r‘(ℤ/nℤ‘𝑁)))(.r‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))) = ((1r‘(ℤ/nℤ‘𝑁))( ·𝑠 ‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))
125115, 121, 48, 124syl3anc 1371 . . . . . . . . . . . . . 14 (𝜑 → (((algSc‘(Poly1‘(ℤ/nℤ‘𝑁)))‘(1r‘(ℤ/nℤ‘𝑁)))(.r‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))) = ((1r‘(ℤ/nℤ‘𝑁))( ·𝑠 ‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))
126113, 125eqtrd 2780 . . . . . . . . . . . . 13 (𝜑 → (𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))) = ((1r‘(ℤ/nℤ‘𝑁))( ·𝑠 ‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))
127126fveq2d 6924 . . . . . . . . . . . 12 (𝜑 → (𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))) = (𝐹‘((1r‘(ℤ/nℤ‘𝑁))( ·𝑠 ‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))))
128 eqid 2740 . . . . . . . . . . . . 13 (var1𝐾) = (var1𝐾)
129 eqid 2740 . . . . . . . . . . . . 13 ( ·𝑠 ‘(Poly1𝐾)) = ( ·𝑠 ‘(Poly1𝐾))
130 eqid 2740 . . . . . . . . . . . . 13 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
131 eqid 2740 . . . . . . . . . . . . 13 (.g‘(mulGrp‘(Poly1𝐾))) = (.g‘(mulGrp‘(Poly1𝐾)))
13232, 68, 38, 116, 5, 45, 128, 123, 129, 37, 130, 40, 131, 77, 119, 14rhmply1mon 22414 . . . . . . . . . . . 12 (𝜑 → (𝐹‘((1r‘(ℤ/nℤ‘𝑁))( ·𝑠 ‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))) = ((𝐺‘(1r‘(ℤ/nℤ‘𝑁)))( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
133127, 132eqtrd 2780 . . . . . . . . . . 11 (𝜑 → (𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))) = ((𝐺‘(1r‘(ℤ/nℤ‘𝑁)))( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
134133fveq2d 6924 . . . . . . . . . 10 (𝜑 → (𝐻‘(𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))) = (𝐻‘((𝐺‘(1r‘(ℤ/nℤ‘𝑁)))( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))))
135 eqid 2740 . . . . . . . . . . . . . . 15 (1r𝐾) = (1r𝐾)
136117, 135rhm1 20515 . . . . . . . . . . . . . 14 (𝐺 ∈ ((ℤ/nℤ‘𝑁) RingHom 𝐾) → (𝐺‘(1r‘(ℤ/nℤ‘𝑁))) = (1r𝐾))
13777, 136syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐺‘(1r‘(ℤ/nℤ‘𝑁))) = (1r𝐾))
138137oveq1d 7463 . . . . . . . . . . . 12 (𝜑 → ((𝐺‘(1r‘(ℤ/nℤ‘𝑁)))( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = ((1r𝐾)( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
139138fveq2d 6924 . . . . . . . . . . 11 (𝜑 → (𝐻‘((𝐺‘(1r‘(ℤ/nℤ‘𝑁)))( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))) = (𝐻‘((1r𝐾)( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))))
14068ply1assa 22222 . . . . . . . . . . . . . . . 16 (𝐾 ∈ CRing → (Poly1𝐾) ∈ AssAlg)
1419, 140syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (Poly1𝐾) ∈ AssAlg)
14219, 135ringidcl 20289 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Ring → (1r𝐾) ∈ (Base‘𝐾))
14369, 142syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝐾) ∈ (Base‘𝐾))
14468ply1sca 22275 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Field → 𝐾 = (Scalar‘(Poly1𝐾)))
1452, 144syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 = (Scalar‘(Poly1𝐾)))
146145fveq2d 6924 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘(Poly1𝐾))))
147143, 146eleqtrd 2846 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝐾) ∈ (Base‘(Scalar‘(Poly1𝐾))))
148130, 86mgpbas 20167 . . . . . . . . . . . . . . . 16 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
14968ply1crng 22221 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ CRing → (Poly1𝐾) ∈ CRing)
1509, 149syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Poly1𝐾) ∈ CRing)
151 crngring 20272 . . . . . . . . . . . . . . . . . 18 ((Poly1𝐾) ∈ CRing → (Poly1𝐾) ∈ Ring)
152150, 151syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (Poly1𝐾) ∈ Ring)
153130ringmgp 20266 . . . . . . . . . . . . . . . . 17 ((Poly1𝐾) ∈ Ring → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
154152, 153syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
155128, 68, 86vr1cl 22240 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Ring → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
15669, 155syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
157148, 131, 154, 14, 156mulgnn0cld 19135 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)) ∈ (Base‘(Poly1𝐾)))
158 eqid 2740 . . . . . . . . . . . . . . . 16 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
159 eqid 2740 . . . . . . . . . . . . . . . 16 (Scalar‘(Poly1𝐾)) = (Scalar‘(Poly1𝐾))
160 eqid 2740 . . . . . . . . . . . . . . . 16 (Base‘(Scalar‘(Poly1𝐾))) = (Base‘(Scalar‘(Poly1𝐾)))
161 eqid 2740 . . . . . . . . . . . . . . . 16 (.r‘(Poly1𝐾)) = (.r‘(Poly1𝐾))
162158, 159, 160, 86, 161, 129asclmul1 21929 . . . . . . . . . . . . . . 15 (((Poly1𝐾) ∈ AssAlg ∧ (1r𝐾) ∈ (Base‘(Scalar‘(Poly1𝐾))) ∧ (𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)) ∈ (Base‘(Poly1𝐾))) → (((algSc‘(Poly1𝐾))‘(1r𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = ((1r𝐾)( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
163141, 147, 157, 162syl3anc 1371 . . . . . . . . . . . . . 14 (𝜑 → (((algSc‘(Poly1𝐾))‘(1r𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = ((1r𝐾)( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
164163eqcomd 2746 . . . . . . . . . . . . 13 (𝜑 → ((1r𝐾)( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = (((algSc‘(Poly1𝐾))‘(1r𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
165164fveq2d 6924 . . . . . . . . . . . 12 (𝜑 → (𝐻‘((1r𝐾)( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))) = (𝐻‘(((algSc‘(Poly1𝐾))‘(1r𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))))
166 eqid 2740 . . . . . . . . . . . . . . . 16 (1r‘(Poly1𝐾)) = (1r‘(Poly1𝐾))
16768, 158, 135, 166, 69ply1ascl1 22278 . . . . . . . . . . . . . . 15 (𝜑 → ((algSc‘(Poly1𝐾))‘(1r𝐾)) = (1r‘(Poly1𝐾)))
168167oveq1d 7463 . . . . . . . . . . . . . 14 (𝜑 → (((algSc‘(Poly1𝐾))‘(1r𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = ((1r‘(Poly1𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
169168fveq2d 6924 . . . . . . . . . . . . 13 (𝜑 → (𝐻‘(((algSc‘(Poly1𝐾))‘(1r𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))) = (𝐻‘((1r‘(Poly1𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))))
17086, 161, 166, 152, 157ringlidmd 20295 . . . . . . . . . . . . . . 15 (𝜑 → ((1r‘(Poly1𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = (𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))
171170fveq2d 6924 . . . . . . . . . . . . . 14 (𝜑 → (𝐻‘((1r‘(Poly1𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))) = (𝐻‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
1727a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐻 = (𝑟 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑟)‘𝑀)))
173 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 = (𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) → 𝑟 = (𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))
174173fveq2d 6924 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 = (𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) → ((eval1𝐾)‘𝑟) = ((eval1𝐾)‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
175174fveq1d 6922 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 = (𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) → (((eval1𝐾)‘𝑟)‘𝑀) = (((eval1𝐾)‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))‘𝑀))
176 fvexd 6935 . . . . . . . . . . . . . . . 16 (𝜑 → (((eval1𝐾)‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))‘𝑀) ∈ V)
177172, 175, 157, 176fvmptd 7036 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = (((eval1𝐾)‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))‘𝑀))
17885, 128, 19, 68, 86, 9, 22evl1vard 22362 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((var1𝐾) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(var1𝐾))‘𝑀) = 𝑀))
17985, 68, 19, 86, 9, 22, 178, 131, 15, 14evl1expd 22370 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))‘𝑀) = (𝑅(.g‘(mulGrp‘𝐾))𝑀)))
180179simprd 495 . . . . . . . . . . . . . . . 16 (𝜑 → (((eval1𝐾)‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))‘𝑀) = (𝑅(.g‘(mulGrp‘𝐾))𝑀))
18117simp2d 1143 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)))
18210, 135ringidval 20210 . . . . . . . . . . . . . . . . . . 19 (1r𝐾) = (0g‘(mulGrp‘𝐾))
183182eqcomi 2749 . . . . . . . . . . . . . . . . . 18 (0g‘(mulGrp‘𝐾)) = (1r𝐾)
184183a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g‘(mulGrp‘𝐾)) = (1r𝐾))
185181, 184eqtrd 2780 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (1r𝐾))
186180, 185eqtrd 2780 . . . . . . . . . . . . . . 15 (𝜑 → (((eval1𝐾)‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))‘𝑀) = (1r𝐾))
187177, 186eqtrd 2780 . . . . . . . . . . . . . 14 (𝜑 → (𝐻‘(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = (1r𝐾))
188171, 187eqtrd 2780 . . . . . . . . . . . . 13 (𝜑 → (𝐻‘((1r‘(Poly1𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))) = (1r𝐾))
189169, 188eqtrd 2780 . . . . . . . . . . . 12 (𝜑 → (𝐻‘(((algSc‘(Poly1𝐾))‘(1r𝐾))(.r‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))) = (1r𝐾))
190165, 189eqtrd 2780 . . . . . . . . . . 11 (𝜑 → (𝐻‘((1r𝐾)( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))) = (1r𝐾))
191139, 190eqtrd 2780 . . . . . . . . . 10 (𝜑 → (𝐻‘((𝐺‘(1r‘(ℤ/nℤ‘𝑁)))( ·𝑠 ‘(Poly1𝐾))(𝑅(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))) = (1r𝐾))
192134, 191eqtrd 2780 . . . . . . . . 9 (𝜑 → (𝐻‘(𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))) = (1r𝐾))
193166, 135rhm1 20515 . . . . . . . . . . 11 (𝐻 ∈ ((Poly1𝐾) RingHom 𝐾) → (𝐻‘(1r‘(Poly1𝐾))) = (1r𝐾))
19487, 193syl 17 . . . . . . . . . 10 (𝜑 → (𝐻‘(1r‘(Poly1𝐾))) = (1r𝐾))
195194eqcomd 2746 . . . . . . . . 9 (𝜑 → (1r𝐾) = (𝐻‘(1r‘(Poly1𝐾))))
196192, 195eqtrd 2780 . . . . . . . 8 (𝜑 → (𝐻‘(𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))) = (𝐻‘(1r‘(Poly1𝐾))))
197196, 194eqtrd 2780 . . . . . . 7 (𝜑 → (𝐻‘(𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))) = (1r𝐾))
19849, 166rhm1 20515 . . . . . . . . . 10 (𝐹 ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom (Poly1𝐾)) → (𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))) = (1r‘(Poly1𝐾)))
19978, 198syl 17 . . . . . . . . 9 (𝜑 → (𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))) = (1r‘(Poly1𝐾)))
200199fveq2d 6924 . . . . . . . 8 (𝜑 → (𝐻‘(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))) = (𝐻‘(1r‘(Poly1𝐾))))
201200, 194eqtrd 2780 . . . . . . 7 (𝜑 → (𝐻‘(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))) = (1r𝐾))
202197, 201oveq12d 7466 . . . . . 6 (𝜑 → ((𝐻‘(𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))(-g𝐾)(𝐻‘(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))) = ((1r𝐾)(-g𝐾)(1r𝐾)))
20369ringgrpd 20269 . . . . . . 7 (𝜑𝐾 ∈ Grp)
20419, 1, 94grpsubid 19064 . . . . . . 7 ((𝐾 ∈ Grp ∧ (1r𝐾) ∈ (Base‘𝐾)) → ((1r𝐾)(-g𝐾)(1r𝐾)) = (0g𝐾))
205203, 143, 204syl2anc 583 . . . . . 6 (𝜑 → ((1r𝐾)(-g𝐾)(1r𝐾)) = (0g𝐾))
206202, 205eqtrd 2780 . . . . 5 (𝜑 → ((𝐻‘(𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))))(-g𝐾)(𝐻‘(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))) = (0g𝐾))
20796, 206eqtrd 2780 . . . 4 (𝜑 → (𝐻‘((𝐹‘(𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁))))(-g‘(Poly1𝐾))(𝐹‘(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))) = (0g𝐾))
20884, 207eqtrd 2780 . . 3 (𝜑 → (𝐻‘(𝐹‘((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁)))))) = (0g𝐾))
20967, 208eqtrd 2780 . 2 (𝜑 → ((𝐻𝐹)‘((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))) = (0g𝐾))
2101, 23, 24, 25, 26, 34, 35, 54, 209rhmqusspan 42142 1 (𝜑 → (𝐼 ∈ (𝐴 RingHom 𝐾) ∧ ∀𝑔 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝐼‘[𝑔]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) = ((𝐻𝐹)‘𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  {csn 4648   cuni 4931   class class class wbr 5166  cmpt 5249  ccnv 5699  dom cdm 5700  cima 5703  ccom 5704  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  [cec 8761  cn 12293  0cn0 12553  cdvds 16302  cprime 16718  Basecbs 17258  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499   /s cqus 17565  Mndcmnd 18772  Grpcgrp 18973  -gcsg 18975  .gcmg 19107   ~QG cqg 19162   GrpHom cghm 19252  CMndccmn 19822  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  CRingccrg 20261   RingHom crh 20495  Fieldcfield 20752  LModclmod 20880  RSpancrsp 21240  ℤRHomczrh 21533  chrcchr 21535  ℤ/nczn 21536  AssAlgcasa 21893  algSccascl 21895  var1cv1 22198  Poly1cpl1 22199  eval1ce1 22339   PrimRoots cprimroots 42048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-prm 16719  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-imas 17568  df-qus 17569  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-cntz 19357  df-od 19570  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-field 20754  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-2idl 21283  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-chr 21539  df-zn 21540  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-evls 22121  df-evl 22122  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-evls1 22340  df-evl1 22341  df-primroots 42049
This theorem is referenced by:  aks5lem3a  42146
  Copyright terms: Public domain W3C validator