![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uc1pcl | Structured version Visualization version GIF version |
Description: Unitic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
uc1pcl.p | β’ π = (Poly1βπ ) |
uc1pcl.b | β’ π΅ = (Baseβπ) |
uc1pcl.c | β’ πΆ = (Unic1pβπ ) |
Ref | Expression |
---|---|
uc1pcl | β’ (πΉ β πΆ β πΉ β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uc1pcl.p | . . 3 β’ π = (Poly1βπ ) | |
2 | uc1pcl.b | . . 3 β’ π΅ = (Baseβπ) | |
3 | eqid 2732 | . . 3 β’ (0gβπ) = (0gβπ) | |
4 | eqid 2732 | . . 3 β’ ( deg1 βπ ) = ( deg1 βπ ) | |
5 | uc1pcl.c | . . 3 β’ πΆ = (Unic1pβπ ) | |
6 | eqid 2732 | . . 3 β’ (Unitβπ ) = (Unitβπ ) | |
7 | 1, 2, 3, 4, 5, 6 | isuc1p 25882 | . 2 β’ (πΉ β πΆ β (πΉ β π΅ β§ πΉ β (0gβπ) β§ ((coe1βπΉ)β(( deg1 βπ )βπΉ)) β (Unitβπ ))) |
8 | 7 | simp1bi 1145 | 1 β’ (πΉ β πΆ β πΉ β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wne 2940 βcfv 6543 Basecbs 17148 0gc0g 17389 Unitcui 20246 Poly1cpl1 21920 coe1cco1 21921 deg1 cdg1 25793 Unic1pcuc1p 25868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-1cn 11170 ax-addcl 11172 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-nn 12217 df-slot 17119 df-ndx 17131 df-base 17149 df-uc1p 25873 |
This theorem is referenced by: uc1pdeg 25889 uc1pmon1p 25893 q1peqb 25896 r1pcl 25899 r1pdeglt 25900 r1pid 25901 dvdsq1p 25902 dvdsr1p 25903 q1pdir 32936 q1pvsca 32937 r1pvsca 32938 r1pcyc 32940 r1padd1 32941 r1pid2 32942 |
Copyright terms: Public domain | W3C validator |