| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uc1pcl | Structured version Visualization version GIF version | ||
| Description: Unitic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| uc1pcl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| uc1pcl.b | ⊢ 𝐵 = (Base‘𝑃) |
| uc1pcl.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
| Ref | Expression |
|---|---|
| uc1pcl | ⊢ (𝐹 ∈ 𝐶 → 𝐹 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uc1pcl.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | uc1pcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 3 | eqid 2731 | . . 3 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 4 | eqid 2731 | . . 3 ⊢ (deg1‘𝑅) = (deg1‘𝑅) | |
| 5 | uc1pcl.c | . . 3 ⊢ 𝐶 = (Unic1p‘𝑅) | |
| 6 | eqid 2731 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | isuc1p 26068 | . 2 ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ (0g‘𝑃) ∧ ((coe1‘𝐹)‘((deg1‘𝑅)‘𝐹)) ∈ (Unit‘𝑅))) |
| 8 | 7 | simp1bi 1145 | 1 ⊢ (𝐹 ∈ 𝐶 → 𝐹 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6476 Basecbs 17115 0gc0g 17338 Unitcui 20268 Poly1cpl1 22084 coe1cco1 22085 deg1cdg1 25981 Unic1pcuc1p 26054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-1cn 11059 ax-addcl 11061 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 df-slot 17088 df-ndx 17100 df-base 17116 df-uc1p 26059 |
| This theorem is referenced by: uc1pdeg 26075 uc1pmon1p 26079 q1peqb 26083 r1pcl 26086 r1pdeglt 26087 r1pid 26088 r1pid2 26089 dvdsq1p 26090 dvdsr1p 26091 q1pdir 33555 q1pvsca 33556 r1pvsca 33557 r1pcyc 33559 r1padd1 33560 r1pid2OLD 33561 ply1divalg3 35678 r1peuqusdeg1 35679 |
| Copyright terms: Public domain | W3C validator |