| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uc1pcl | Structured version Visualization version GIF version | ||
| Description: Unitic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| uc1pcl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| uc1pcl.b | ⊢ 𝐵 = (Base‘𝑃) |
| uc1pcl.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
| Ref | Expression |
|---|---|
| uc1pcl | ⊢ (𝐹 ∈ 𝐶 → 𝐹 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uc1pcl.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | uc1pcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 3 | eqid 2733 | . . 3 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 4 | eqid 2733 | . . 3 ⊢ (deg1‘𝑅) = (deg1‘𝑅) | |
| 5 | uc1pcl.c | . . 3 ⊢ 𝐶 = (Unic1p‘𝑅) | |
| 6 | eqid 2733 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | isuc1p 26093 | . 2 ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ (0g‘𝑃) ∧ ((coe1‘𝐹)‘((deg1‘𝑅)‘𝐹)) ∈ (Unit‘𝑅))) |
| 8 | 7 | simp1bi 1145 | 1 ⊢ (𝐹 ∈ 𝐶 → 𝐹 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ‘cfv 6489 Basecbs 17127 0gc0g 17350 Unitcui 20282 Poly1cpl1 22108 coe1cco1 22109 deg1cdg1 26006 Unic1pcuc1p 26079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-1cn 11075 ax-addcl 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-nn 12137 df-slot 17100 df-ndx 17112 df-base 17128 df-uc1p 26084 |
| This theorem is referenced by: uc1pdeg 26100 uc1pmon1p 26104 q1peqb 26108 r1pcl 26111 r1pdeglt 26112 r1pid 26113 r1pid2 26114 dvdsq1p 26115 dvdsr1p 26116 q1pdir 33612 q1pvsca 33613 r1pvsca 33614 r1pcyc 33616 r1padd1 33617 r1pid2OLD 33618 ply1divalg3 35758 r1peuqusdeg1 35759 |
| Copyright terms: Public domain | W3C validator |