Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uc1pcl | Structured version Visualization version GIF version |
Description: Unitic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
uc1pcl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
uc1pcl.b | ⊢ 𝐵 = (Base‘𝑃) |
uc1pcl.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
Ref | Expression |
---|---|
uc1pcl | ⊢ (𝐹 ∈ 𝐶 → 𝐹 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uc1pcl.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | uc1pcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
3 | eqid 2737 | . . 3 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
4 | eqid 2737 | . . 3 ⊢ ( deg1 ‘𝑅) = ( deg1 ‘𝑅) | |
5 | uc1pcl.c | . . 3 ⊢ 𝐶 = (Unic1p‘𝑅) | |
6 | eqid 2737 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | isuc1p 25377 | . 2 ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ (0g‘𝑃) ∧ ((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ∈ (Unit‘𝑅))) |
8 | 7 | simp1bi 1144 | 1 ⊢ (𝐹 ∈ 𝐶 → 𝐹 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ‘cfv 6465 Basecbs 16982 0gc0g 17220 Unitcui 19949 Poly1cpl1 21420 coe1cco1 21421 deg1 cdg1 25288 Unic1pcuc1p 25363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-1cn 11002 ax-addcl 11004 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7318 df-om 7758 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-nn 12047 df-slot 16953 df-ndx 16965 df-base 16983 df-uc1p 25368 |
This theorem is referenced by: uc1pdeg 25384 uc1pmon1p 25388 q1peqb 25391 r1pcl 25394 r1pdeglt 25395 r1pid 25396 dvdsq1p 25397 dvdsr1p 25398 |
Copyright terms: Public domain | W3C validator |