MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uc1pcl Structured version   Visualization version   GIF version

Theorem uc1pcl 26071
Description: Unitic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
uc1pcl.p 𝑃 = (Poly1𝑅)
uc1pcl.b 𝐵 = (Base‘𝑃)
uc1pcl.c 𝐶 = (Unic1p𝑅)
Assertion
Ref Expression
uc1pcl (𝐹𝐶𝐹𝐵)

Proof of Theorem uc1pcl
StepHypRef Expression
1 uc1pcl.p . . 3 𝑃 = (Poly1𝑅)
2 uc1pcl.b . . 3 𝐵 = (Base‘𝑃)
3 eqid 2731 . . 3 (0g𝑃) = (0g𝑃)
4 eqid 2731 . . 3 (deg1𝑅) = (deg1𝑅)
5 uc1pcl.c . . 3 𝐶 = (Unic1p𝑅)
6 eqid 2731 . . 3 (Unit‘𝑅) = (Unit‘𝑅)
71, 2, 3, 4, 5, 6isuc1p 26068 . 2 (𝐹𝐶 ↔ (𝐹𝐵𝐹 ≠ (0g𝑃) ∧ ((coe1𝐹)‘((deg1𝑅)‘𝐹)) ∈ (Unit‘𝑅)))
87simp1bi 1145 1 (𝐹𝐶𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  cfv 6476  Basecbs 17115  0gc0g 17338  Unitcui 20268  Poly1cpl1 22084  coe1cco1 22085  deg1cdg1 25981  Unic1pcuc1p 26054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-1cn 11059  ax-addcl 11061
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-nn 12121  df-slot 17088  df-ndx 17100  df-base 17116  df-uc1p 26059
This theorem is referenced by:  uc1pdeg  26075  uc1pmon1p  26079  q1peqb  26083  r1pcl  26086  r1pdeglt  26087  r1pid  26088  r1pid2  26089  dvdsq1p  26090  dvdsr1p  26091  q1pdir  33555  q1pvsca  33556  r1pvsca  33557  r1pcyc  33559  r1padd1  33560  r1pid2OLD  33561  ply1divalg3  35678  r1peuqusdeg1  35679
  Copyright terms: Public domain W3C validator