| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iunconnALT | Structured version Visualization version GIF version | ||
| Description: The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconaltvd.html. As it is verified by the Metamath program, iunconnALT 44929 verifies https://us.metamath.org/other/completeusersproof/iunconaltvd.html 44929. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| iunconnALT.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| iunconnALT.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) |
| iunconnALT.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) |
| iunconnALT.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) |
| Ref | Expression |
|---|---|
| iunconnALT | ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 261 | . 2 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐽) ∧ (𝑢 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑣 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵)) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) ↔ ((((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐽) ∧ (𝑢 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑣 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵)) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣))) | |
| 2 | iunconnALT.1 | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 3 | iunconnALT.2 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) | |
| 4 | iunconnALT.3 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) | |
| 5 | iunconnALT.4 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) | |
| 6 | 1, 2, 3, 4, 5 | iunconnlem2 44928 | 1 ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3900 ∪ cun 3901 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 ∪ ciun 4941 ‘cfv 6482 (class class class)co 7349 ↾t crest 17324 TopOnctopon 22795 Conncconn 23296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-en 8873 df-fin 8876 df-fi 9301 df-rest 17326 df-topgen 17347 df-top 22779 df-topon 22796 df-bases 22831 df-cld 22904 df-conn 23297 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |