Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunconnALT | Structured version Visualization version GIF version |
Description: The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconaltvd.html. As it is verified by the Metamath program, iunconnALT 42445 verifies https://us.metamath.org/other/completeusersproof/iunconaltvd.html 42445. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
iunconnALT.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
iunconnALT.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) |
iunconnALT.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) |
iunconnALT.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) |
Ref | Expression |
---|---|
iunconnALT | ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 260 | . 2 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐽) ∧ (𝑢 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑣 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵)) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) ↔ ((((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐽) ∧ (𝑢 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑣 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵)) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣))) | |
2 | iunconnALT.1 | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | iunconnALT.2 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) | |
4 | iunconnALT.3 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) | |
5 | iunconnALT.4 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) | |
6 | 1, 2, 3, 4, 5 | iunconnlem2 42444 | 1 ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 ∪ ciun 4921 ‘cfv 6418 (class class class)co 7255 ↾t crest 17048 TopOnctopon 21967 Conncconn 22470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-en 8692 df-fin 8695 df-fi 9100 df-rest 17050 df-topgen 17071 df-top 21951 df-topon 21968 df-bases 22004 df-cld 22078 df-conn 22471 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |