Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunconnALT Structured version   Visualization version   GIF version

Theorem iunconnALT 45052
Description: The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconaltvd.html. As it is verified by the Metamath program, iunconnALT 45052 verifies https://us.metamath.org/other/completeusersproof/iunconaltvd.html 45052. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
iunconnALT.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
iunconnALT.2 ((𝜑𝑘𝐴) → 𝐵𝑋)
iunconnALT.3 ((𝜑𝑘𝐴) → 𝑃𝐵)
iunconnALT.4 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
Assertion
Ref Expression
iunconnALT (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝑘,𝐽   𝑃,𝑘   𝑘,𝑋
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem iunconnALT
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 261 . 2 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) ↔ ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
2 iunconnALT.1 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 iunconnALT.2 . 2 ((𝜑𝑘𝐴) → 𝐵𝑋)
4 iunconnALT.3 . 2 ((𝜑𝑘𝐴) → 𝑃𝐵)
5 iunconnALT.4 . 2 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
61, 2, 3, 4, 5iunconnlem2 45051 1 (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  wne 2929  cdif 3895  cun 3896  cin 3897  wss 3898  c0 4282   ciun 4941  cfv 6486  (class class class)co 7352  t crest 17326  TopOnctopon 22826  Conncconn 23327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-en 8876  df-fin 8879  df-fi 9302  df-rest 17328  df-topgen 17349  df-top 22810  df-topon 22827  df-bases 22862  df-cld 22935  df-conn 23328
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator