Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunconnALT Structured version   Visualization version   GIF version

Theorem iunconnALT 44152
Description: The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconaltvd.html. As it is verified by the Metamath program, iunconnALT 44152 verifies https://us.metamath.org/other/completeusersproof/iunconaltvd.html 44152. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
iunconnALT.1 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
iunconnALT.2 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 βŠ† 𝑋)
iunconnALT.3 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝑃 ∈ 𝐡)
iunconnALT.4 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (𝐽 β†Ύt 𝐡) ∈ Conn)
Assertion
Ref Expression
iunconnALT (πœ‘ β†’ (𝐽 β†Ύt βˆͺ π‘˜ ∈ 𝐴 𝐡) ∈ Conn)
Distinct variable groups:   πœ‘,π‘˜   𝐴,π‘˜   π‘˜,𝐽   𝑃,π‘˜   π‘˜,𝑋
Allowed substitution hint:   𝐡(π‘˜)

Proof of Theorem iunconnALT
Dummy variables 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 261 . 2 (((((((πœ‘ ∧ 𝑒 ∈ 𝐽) ∧ 𝑣 ∈ 𝐽) ∧ (𝑒 ∩ βˆͺ π‘˜ ∈ 𝐴 𝐡) β‰  βˆ…) ∧ (𝑣 ∩ βˆͺ π‘˜ ∈ 𝐴 𝐡) β‰  βˆ…) ∧ (𝑒 ∩ 𝑣) βŠ† (𝑋 βˆ– βˆͺ π‘˜ ∈ 𝐴 𝐡)) ∧ βˆͺ π‘˜ ∈ 𝐴 𝐡 βŠ† (𝑒 βˆͺ 𝑣)) ↔ ((((((πœ‘ ∧ 𝑒 ∈ 𝐽) ∧ 𝑣 ∈ 𝐽) ∧ (𝑒 ∩ βˆͺ π‘˜ ∈ 𝐴 𝐡) β‰  βˆ…) ∧ (𝑣 ∩ βˆͺ π‘˜ ∈ 𝐴 𝐡) β‰  βˆ…) ∧ (𝑒 ∩ 𝑣) βŠ† (𝑋 βˆ– βˆͺ π‘˜ ∈ 𝐴 𝐡)) ∧ βˆͺ π‘˜ ∈ 𝐴 𝐡 βŠ† (𝑒 βˆͺ 𝑣)))
2 iunconnALT.1 . 2 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
3 iunconnALT.2 . 2 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 βŠ† 𝑋)
4 iunconnALT.3 . 2 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝑃 ∈ 𝐡)
5 iunconnALT.4 . 2 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (𝐽 β†Ύt 𝐡) ∈ Conn)
61, 2, 3, 4, 5iunconnlem2 44151 1 (πœ‘ β†’ (𝐽 β†Ύt βˆͺ π‘˜ ∈ 𝐴 𝐡) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∈ wcel 2098   β‰  wne 2932   βˆ– cdif 3937   βˆͺ cun 3938   ∩ cin 3939   βŠ† wss 3940  βˆ…c0 4314  βˆͺ ciun 4987  β€˜cfv 6533  (class class class)co 7401   β†Ύt crest 17364  TopOnctopon 22733  Conncconn 23236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-en 8935  df-fin 8938  df-fi 9401  df-rest 17366  df-topgen 17387  df-top 22717  df-topon 22734  df-bases 22770  df-cld 22844  df-conn 23237
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator