![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunconnALT | Structured version Visualization version GIF version |
Description: The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconaltvd.html. As it is verified by the Metamath program, iunconnALT 44152 verifies https://us.metamath.org/other/completeusersproof/iunconaltvd.html 44152. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
iunconnALT.1 | β’ (π β π½ β (TopOnβπ)) |
iunconnALT.2 | β’ ((π β§ π β π΄) β π΅ β π) |
iunconnALT.3 | β’ ((π β§ π β π΄) β π β π΅) |
iunconnALT.4 | β’ ((π β§ π β π΄) β (π½ βΎt π΅) β Conn) |
Ref | Expression |
---|---|
iunconnALT | β’ (π β (π½ βΎt βͺ π β π΄ π΅) β Conn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 261 | . 2 β’ (((((((π β§ π’ β π½) β§ π£ β π½) β§ (π’ β© βͺ π β π΄ π΅) β β ) β§ (π£ β© βͺ π β π΄ π΅) β β ) β§ (π’ β© π£) β (π β βͺ π β π΄ π΅)) β§ βͺ π β π΄ π΅ β (π’ βͺ π£)) β ((((((π β§ π’ β π½) β§ π£ β π½) β§ (π’ β© βͺ π β π΄ π΅) β β ) β§ (π£ β© βͺ π β π΄ π΅) β β ) β§ (π’ β© π£) β (π β βͺ π β π΄ π΅)) β§ βͺ π β π΄ π΅ β (π’ βͺ π£))) | |
2 | iunconnALT.1 | . 2 β’ (π β π½ β (TopOnβπ)) | |
3 | iunconnALT.2 | . 2 β’ ((π β§ π β π΄) β π΅ β π) | |
4 | iunconnALT.3 | . 2 β’ ((π β§ π β π΄) β π β π΅) | |
5 | iunconnALT.4 | . 2 β’ ((π β§ π β π΄) β (π½ βΎt π΅) β Conn) | |
6 | 1, 2, 3, 4, 5 | iunconnlem2 44151 | 1 β’ (π β (π½ βΎt βͺ π β π΄ π΅) β Conn) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β wcel 2098 β wne 2932 β cdif 3937 βͺ cun 3938 β© cin 3939 β wss 3940 β c0 4314 βͺ ciun 4987 βcfv 6533 (class class class)co 7401 βΎt crest 17364 TopOnctopon 22733 Conncconn 23236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-en 8935 df-fin 8938 df-fi 9401 df-rest 17366 df-topgen 17387 df-top 22717 df-topon 22734 df-bases 22770 df-cld 22844 df-conn 23237 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |