Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn10 Structured version   Visualization version   GIF version

Theorem cdlemn10 41378
Description: Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 27-Feb-2014.)
Hypotheses
Ref Expression
cdlemn10.b 𝐵 = (Base‘𝐾)
cdlemn10.l = (le‘𝐾)
cdlemn10.j = (join‘𝐾)
cdlemn10.a 𝐴 = (Atoms‘𝐾)
cdlemn10.h 𝐻 = (LHyp‘𝐾)
cdlemn10.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn10.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemn10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆 (𝑄 𝑋))

Proof of Theorem cdlemn10
StepHypRef Expression
1 cdlemn10.b . 2 𝐵 = (Base‘𝐾)
2 cdlemn10.l . 2 = (le‘𝐾)
3 simp1l 1198 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝐾 ∈ HL)
43hllatd 39536 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝐾 ∈ Lat)
5 simp22l 1293 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆𝐴)
6 cdlemn10.a . . . 4 𝐴 = (Atoms‘𝐾)
71, 6atbase 39461 . . 3 (𝑆𝐴𝑆𝐵)
85, 7syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆𝐵)
9 simp21l 1291 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑄𝐴)
10 cdlemn10.j . . . 4 = (join‘𝐾)
111, 10, 6hlatjcl 39539 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → (𝑄 𝑆) ∈ 𝐵)
123, 9, 5, 11syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑆) ∈ 𝐵)
131, 6atbase 39461 . . . 4 (𝑄𝐴𝑄𝐵)
149, 13syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑄𝐵)
15 simp23l 1295 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑋𝐵)
161, 10latjcl 18353 . . 3 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄 𝑋) ∈ 𝐵)
174, 14, 15, 16syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑋) ∈ 𝐵)
182, 10, 6hlatlej2 39548 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → 𝑆 (𝑄 𝑆))
193, 9, 5, 18syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆 (𝑄 𝑆))
20 simp1r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑊𝐻)
21 cdlemn10.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
221, 21lhpbase 40170 . . . . . 6 (𝑊𝐻𝑊𝐵)
2320, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑊𝐵)
242, 10, 6hlatlej1 39547 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → 𝑄 (𝑄 𝑆))
253, 9, 5, 24syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑄 (𝑄 𝑆))
26 eqid 2733 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
271, 2, 10, 26, 6atmod3i1 40036 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑄 𝑆) ∈ 𝐵𝑊𝐵) ∧ 𝑄 (𝑄 𝑆)) → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) = ((𝑄 𝑆)(meet‘𝐾)(𝑄 𝑊)))
283, 9, 12, 23, 25, 27syl131anc 1385 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) = ((𝑄 𝑆)(meet‘𝐾)(𝑄 𝑊)))
29 simp1 1136 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
30 simp21 1207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
31 eqid 2733 . . . . . . 7 (1.‘𝐾) = (1.‘𝐾)
322, 10, 31, 6, 21lhpjat2 40193 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄 𝑊) = (1.‘𝐾))
3329, 30, 32syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑊) = (1.‘𝐾))
3433oveq2d 7371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)(𝑄 𝑊)) = ((𝑄 𝑆)(meet‘𝐾)(1.‘𝐾)))
35 hlol 39533 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
363, 35syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝐾 ∈ OL)
371, 26, 31olm11 39399 . . . . 5 ((𝐾 ∈ OL ∧ (𝑄 𝑆) ∈ 𝐵) → ((𝑄 𝑆)(meet‘𝐾)(1.‘𝐾)) = (𝑄 𝑆))
3836, 12, 37syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)(1.‘𝐾)) = (𝑄 𝑆))
3928, 34, 383eqtrrd 2773 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑆) = (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)))
40 simp31 1210 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑔𝑇)
41 cdlemn10.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
42 cdlemn10.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
432, 10, 26, 6, 21, 41, 42trlval2 40335 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑅𝑔) = ((𝑄 (𝑔𝑄))(meet‘𝐾)𝑊))
4429, 40, 30, 43syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑅𝑔) = ((𝑄 (𝑔𝑄))(meet‘𝐾)𝑊))
45 simp32 1211 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑔𝑄) = 𝑆)
4645oveq2d 7371 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 (𝑔𝑄)) = (𝑄 𝑆))
4746oveq1d 7370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 (𝑔𝑄))(meet‘𝐾)𝑊) = ((𝑄 𝑆)(meet‘𝐾)𝑊))
4844, 47eqtrd 2768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑅𝑔) = ((𝑄 𝑆)(meet‘𝐾)𝑊))
49 simp33 1212 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑅𝑔) 𝑋)
5048, 49eqbrtrrd 5119 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)𝑊) 𝑋)
511, 26latmcl 18354 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 𝑆) ∈ 𝐵𝑊𝐵) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ∈ 𝐵)
524, 12, 23, 51syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ∈ 𝐵)
531, 2, 10latjlej2 18368 . . . . 5 ((𝐾 ∈ Lat ∧ (((𝑄 𝑆)(meet‘𝐾)𝑊) ∈ 𝐵𝑋𝐵𝑄𝐵)) → (((𝑄 𝑆)(meet‘𝐾)𝑊) 𝑋 → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) (𝑄 𝑋)))
544, 52, 15, 14, 53syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (((𝑄 𝑆)(meet‘𝐾)𝑊) 𝑋 → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) (𝑄 𝑋)))
5550, 54mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) (𝑄 𝑋))
5639, 55eqbrtrd 5117 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑆) (𝑄 𝑋))
571, 2, 4, 8, 12, 17, 19, 56lattrd 18360 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆 (𝑄 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  lecple 17175  joincjn 18225  meetcmee 18226  1.cp1 18336  Latclat 18345  OLcol 39346  Atomscatm 39435  HLchlt 39522  LHypclh 40156  LTrncltrn 40273  trLctrl 40330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-proset 18208  df-poset 18227  df-plt 18242  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-p0 18337  df-p1 18338  df-lat 18346  df-clat 18413  df-oposet 39348  df-ol 39350  df-oml 39351  df-covers 39438  df-ats 39439  df-atl 39470  df-cvlat 39494  df-hlat 39523  df-psubsp 39675  df-pmap 39676  df-padd 39968  df-lhyp 40160  df-laut 40161  df-ldil 40276  df-ltrn 40277  df-trl 40331
This theorem is referenced by:  cdlemn11pre  41382
  Copyright terms: Public domain W3C validator