Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn10 Structured version   Visualization version   GIF version

Theorem cdlemn10 41245
Description: Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 27-Feb-2014.)
Hypotheses
Ref Expression
cdlemn10.b 𝐵 = (Base‘𝐾)
cdlemn10.l = (le‘𝐾)
cdlemn10.j = (join‘𝐾)
cdlemn10.a 𝐴 = (Atoms‘𝐾)
cdlemn10.h 𝐻 = (LHyp‘𝐾)
cdlemn10.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn10.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemn10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆 (𝑄 𝑋))

Proof of Theorem cdlemn10
StepHypRef Expression
1 cdlemn10.b . 2 𝐵 = (Base‘𝐾)
2 cdlemn10.l . 2 = (le‘𝐾)
3 simp1l 1198 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝐾 ∈ HL)
43hllatd 39403 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝐾 ∈ Lat)
5 simp22l 1293 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆𝐴)
6 cdlemn10.a . . . 4 𝐴 = (Atoms‘𝐾)
71, 6atbase 39328 . . 3 (𝑆𝐴𝑆𝐵)
85, 7syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆𝐵)
9 simp21l 1291 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑄𝐴)
10 cdlemn10.j . . . 4 = (join‘𝐾)
111, 10, 6hlatjcl 39406 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → (𝑄 𝑆) ∈ 𝐵)
123, 9, 5, 11syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑆) ∈ 𝐵)
131, 6atbase 39328 . . . 4 (𝑄𝐴𝑄𝐵)
149, 13syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑄𝐵)
15 simp23l 1295 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑋𝐵)
161, 10latjcl 18340 . . 3 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄 𝑋) ∈ 𝐵)
174, 14, 15, 16syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑋) ∈ 𝐵)
182, 10, 6hlatlej2 39415 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → 𝑆 (𝑄 𝑆))
193, 9, 5, 18syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆 (𝑄 𝑆))
20 simp1r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑊𝐻)
21 cdlemn10.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
221, 21lhpbase 40037 . . . . . 6 (𝑊𝐻𝑊𝐵)
2320, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑊𝐵)
242, 10, 6hlatlej1 39414 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → 𝑄 (𝑄 𝑆))
253, 9, 5, 24syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑄 (𝑄 𝑆))
26 eqid 2731 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
271, 2, 10, 26, 6atmod3i1 39903 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑄 𝑆) ∈ 𝐵𝑊𝐵) ∧ 𝑄 (𝑄 𝑆)) → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) = ((𝑄 𝑆)(meet‘𝐾)(𝑄 𝑊)))
283, 9, 12, 23, 25, 27syl131anc 1385 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) = ((𝑄 𝑆)(meet‘𝐾)(𝑄 𝑊)))
29 simp1 1136 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
30 simp21 1207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
31 eqid 2731 . . . . . . 7 (1.‘𝐾) = (1.‘𝐾)
322, 10, 31, 6, 21lhpjat2 40060 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄 𝑊) = (1.‘𝐾))
3329, 30, 32syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑊) = (1.‘𝐾))
3433oveq2d 7357 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)(𝑄 𝑊)) = ((𝑄 𝑆)(meet‘𝐾)(1.‘𝐾)))
35 hlol 39400 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
363, 35syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝐾 ∈ OL)
371, 26, 31olm11 39266 . . . . 5 ((𝐾 ∈ OL ∧ (𝑄 𝑆) ∈ 𝐵) → ((𝑄 𝑆)(meet‘𝐾)(1.‘𝐾)) = (𝑄 𝑆))
3836, 12, 37syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)(1.‘𝐾)) = (𝑄 𝑆))
3928, 34, 383eqtrrd 2771 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑆) = (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)))
40 simp31 1210 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑔𝑇)
41 cdlemn10.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
42 cdlemn10.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
432, 10, 26, 6, 21, 41, 42trlval2 40202 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑅𝑔) = ((𝑄 (𝑔𝑄))(meet‘𝐾)𝑊))
4429, 40, 30, 43syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑅𝑔) = ((𝑄 (𝑔𝑄))(meet‘𝐾)𝑊))
45 simp32 1211 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑔𝑄) = 𝑆)
4645oveq2d 7357 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 (𝑔𝑄)) = (𝑄 𝑆))
4746oveq1d 7356 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 (𝑔𝑄))(meet‘𝐾)𝑊) = ((𝑄 𝑆)(meet‘𝐾)𝑊))
4844, 47eqtrd 2766 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑅𝑔) = ((𝑄 𝑆)(meet‘𝐾)𝑊))
49 simp33 1212 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑅𝑔) 𝑋)
5048, 49eqbrtrrd 5110 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)𝑊) 𝑋)
511, 26latmcl 18341 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 𝑆) ∈ 𝐵𝑊𝐵) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ∈ 𝐵)
524, 12, 23, 51syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ∈ 𝐵)
531, 2, 10latjlej2 18355 . . . . 5 ((𝐾 ∈ Lat ∧ (((𝑄 𝑆)(meet‘𝐾)𝑊) ∈ 𝐵𝑋𝐵𝑄𝐵)) → (((𝑄 𝑆)(meet‘𝐾)𝑊) 𝑋 → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) (𝑄 𝑋)))
544, 52, 15, 14, 53syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (((𝑄 𝑆)(meet‘𝐾)𝑊) 𝑋 → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) (𝑄 𝑋)))
5550, 54mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) (𝑄 𝑋))
5639, 55eqbrtrd 5108 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑆) (𝑄 𝑋))
571, 2, 4, 8, 12, 17, 19, 56lattrd 18347 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆 (𝑄 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5086  cfv 6476  (class class class)co 7341  Basecbs 17115  lecple 17163  joincjn 18212  meetcmee 18213  1.cp1 18323  Latclat 18332  OLcol 39213  Atomscatm 39302  HLchlt 39389  LHypclh 40023  LTrncltrn 40140  trLctrl 40197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-map 8747  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-p1 18325  df-lat 18333  df-clat 18400  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-psubsp 39542  df-pmap 39543  df-padd 39835  df-lhyp 40027  df-laut 40028  df-ldil 40143  df-ltrn 40144  df-trl 40198
This theorem is referenced by:  cdlemn11pre  41249
  Copyright terms: Public domain W3C validator