Proof of Theorem cdlemn10
Step | Hyp | Ref
| Expression |
1 | | cdlemn10.b |
. 2
⊢ 𝐵 = (Base‘𝐾) |
2 | | cdlemn10.l |
. 2
⊢ ≤ =
(le‘𝐾) |
3 | | simp1l 1196 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → 𝐾 ∈ HL) |
4 | 3 | hllatd 37378 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → 𝐾 ∈ Lat) |
5 | | simp22l 1291 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → 𝑆 ∈ 𝐴) |
6 | | cdlemn10.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
7 | 1, 6 | atbase 37303 |
. . 3
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ 𝐵) |
8 | 5, 7 | syl 17 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → 𝑆 ∈ 𝐵) |
9 | | simp21l 1289 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → 𝑄 ∈ 𝐴) |
10 | | cdlemn10.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
11 | 1, 10, 6 | hlatjcl 37381 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑄 ∨ 𝑆) ∈ 𝐵) |
12 | 3, 9, 5, 11 | syl3anc 1370 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → (𝑄 ∨ 𝑆) ∈ 𝐵) |
13 | 1, 6 | atbase 37303 |
. . . 4
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
14 | 9, 13 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → 𝑄 ∈ 𝐵) |
15 | | simp23l 1293 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → 𝑋 ∈ 𝐵) |
16 | 1, 10 | latjcl 18157 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑄 ∨ 𝑋) ∈ 𝐵) |
17 | 4, 14, 15, 16 | syl3anc 1370 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → (𝑄 ∨ 𝑋) ∈ 𝐵) |
18 | 2, 10, 6 | hlatlej2 37390 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑆 ≤ (𝑄 ∨ 𝑆)) |
19 | 3, 9, 5, 18 | syl3anc 1370 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → 𝑆 ≤ (𝑄 ∨ 𝑆)) |
20 | | simp1r 1197 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → 𝑊 ∈ 𝐻) |
21 | | cdlemn10.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
22 | 1, 21 | lhpbase 38012 |
. . . . . 6
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
23 | 20, 22 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → 𝑊 ∈ 𝐵) |
24 | 2, 10, 6 | hlatlej1 37389 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑆)) |
25 | 3, 9, 5, 24 | syl3anc 1370 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → 𝑄 ≤ (𝑄 ∨ 𝑆)) |
26 | | eqid 2738 |
. . . . . 6
⊢
(meet‘𝐾) =
(meet‘𝐾) |
27 | 1, 2, 10, 26, 6 | atmod3i1 37878 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ (𝑄 ∨ 𝑆) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝑄 ≤ (𝑄 ∨ 𝑆)) → (𝑄 ∨ ((𝑄 ∨ 𝑆)(meet‘𝐾)𝑊)) = ((𝑄 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑊))) |
28 | 3, 9, 12, 23, 25, 27 | syl131anc 1382 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → (𝑄 ∨ ((𝑄 ∨ 𝑆)(meet‘𝐾)𝑊)) = ((𝑄 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑊))) |
29 | | simp1 1135 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
30 | | simp21 1205 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
31 | | eqid 2738 |
. . . . . . 7
⊢
(1.‘𝐾) =
(1.‘𝐾) |
32 | 2, 10, 31, 6, 21 | lhpjat2 38035 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑄 ∨ 𝑊) = (1.‘𝐾)) |
33 | 29, 30, 32 | syl2anc 584 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → (𝑄 ∨ 𝑊) = (1.‘𝐾)) |
34 | 33 | oveq2d 7291 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → ((𝑄 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑊)) = ((𝑄 ∨ 𝑆)(meet‘𝐾)(1.‘𝐾))) |
35 | | hlol 37375 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
36 | 3, 35 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → 𝐾 ∈ OL) |
37 | 1, 26, 31 | olm11 37241 |
. . . . 5
⊢ ((𝐾 ∈ OL ∧ (𝑄 ∨ 𝑆) ∈ 𝐵) → ((𝑄 ∨ 𝑆)(meet‘𝐾)(1.‘𝐾)) = (𝑄 ∨ 𝑆)) |
38 | 36, 12, 37 | syl2anc 584 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → ((𝑄 ∨ 𝑆)(meet‘𝐾)(1.‘𝐾)) = (𝑄 ∨ 𝑆)) |
39 | 28, 34, 38 | 3eqtrrd 2783 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → (𝑄 ∨ 𝑆) = (𝑄 ∨ ((𝑄 ∨ 𝑆)(meet‘𝐾)𝑊))) |
40 | | simp31 1208 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → 𝑔 ∈ 𝑇) |
41 | | cdlemn10.t |
. . . . . . . 8
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
42 | | cdlemn10.r |
. . . . . . . 8
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
43 | 2, 10, 26, 6, 21, 41, 42 | trlval2 38177 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑅‘𝑔) = ((𝑄 ∨ (𝑔‘𝑄))(meet‘𝐾)𝑊)) |
44 | 29, 40, 30, 43 | syl3anc 1370 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → (𝑅‘𝑔) = ((𝑄 ∨ (𝑔‘𝑄))(meet‘𝐾)𝑊)) |
45 | | simp32 1209 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → (𝑔‘𝑄) = 𝑆) |
46 | 45 | oveq2d 7291 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → (𝑄 ∨ (𝑔‘𝑄)) = (𝑄 ∨ 𝑆)) |
47 | 46 | oveq1d 7290 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → ((𝑄 ∨ (𝑔‘𝑄))(meet‘𝐾)𝑊) = ((𝑄 ∨ 𝑆)(meet‘𝐾)𝑊)) |
48 | 44, 47 | eqtrd 2778 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → (𝑅‘𝑔) = ((𝑄 ∨ 𝑆)(meet‘𝐾)𝑊)) |
49 | | simp33 1210 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → (𝑅‘𝑔) ≤ 𝑋) |
50 | 48, 49 | eqbrtrrd 5098 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → ((𝑄 ∨ 𝑆)(meet‘𝐾)𝑊) ≤ 𝑋) |
51 | 1, 26 | latmcl 18158 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑆) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((𝑄 ∨ 𝑆)(meet‘𝐾)𝑊) ∈ 𝐵) |
52 | 4, 12, 23, 51 | syl3anc 1370 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → ((𝑄 ∨ 𝑆)(meet‘𝐾)𝑊) ∈ 𝐵) |
53 | 1, 2, 10 | latjlej2 18172 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (((𝑄 ∨ 𝑆)(meet‘𝐾)𝑊) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵)) → (((𝑄 ∨ 𝑆)(meet‘𝐾)𝑊) ≤ 𝑋 → (𝑄 ∨ ((𝑄 ∨ 𝑆)(meet‘𝐾)𝑊)) ≤ (𝑄 ∨ 𝑋))) |
54 | 4, 52, 15, 14, 53 | syl13anc 1371 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → (((𝑄 ∨ 𝑆)(meet‘𝐾)𝑊) ≤ 𝑋 → (𝑄 ∨ ((𝑄 ∨ 𝑆)(meet‘𝐾)𝑊)) ≤ (𝑄 ∨ 𝑋))) |
55 | 50, 54 | mpd 15 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → (𝑄 ∨ ((𝑄 ∨ 𝑆)(meet‘𝐾)𝑊)) ≤ (𝑄 ∨ 𝑋)) |
56 | 39, 55 | eqbrtrd 5096 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → (𝑄 ∨ 𝑆) ≤ (𝑄 ∨ 𝑋)) |
57 | 1, 2, 4, 8, 12, 17, 19, 56 | lattrd 18164 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑄) = 𝑆 ∧ (𝑅‘𝑔) ≤ 𝑋)) → 𝑆 ≤ (𝑄 ∨ 𝑋)) |