Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn10 Structured version   Visualization version   GIF version

Theorem cdlemn10 41208
Description: Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 27-Feb-2014.)
Hypotheses
Ref Expression
cdlemn10.b 𝐵 = (Base‘𝐾)
cdlemn10.l = (le‘𝐾)
cdlemn10.j = (join‘𝐾)
cdlemn10.a 𝐴 = (Atoms‘𝐾)
cdlemn10.h 𝐻 = (LHyp‘𝐾)
cdlemn10.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn10.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemn10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆 (𝑄 𝑋))

Proof of Theorem cdlemn10
StepHypRef Expression
1 cdlemn10.b . 2 𝐵 = (Base‘𝐾)
2 cdlemn10.l . 2 = (le‘𝐾)
3 simp1l 1198 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝐾 ∈ HL)
43hllatd 39365 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝐾 ∈ Lat)
5 simp22l 1293 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆𝐴)
6 cdlemn10.a . . . 4 𝐴 = (Atoms‘𝐾)
71, 6atbase 39290 . . 3 (𝑆𝐴𝑆𝐵)
85, 7syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆𝐵)
9 simp21l 1291 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑄𝐴)
10 cdlemn10.j . . . 4 = (join‘𝐾)
111, 10, 6hlatjcl 39368 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → (𝑄 𝑆) ∈ 𝐵)
123, 9, 5, 11syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑆) ∈ 𝐵)
131, 6atbase 39290 . . . 4 (𝑄𝐴𝑄𝐵)
149, 13syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑄𝐵)
15 simp23l 1295 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑋𝐵)
161, 10latjcl 18484 . . 3 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄 𝑋) ∈ 𝐵)
174, 14, 15, 16syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑋) ∈ 𝐵)
182, 10, 6hlatlej2 39377 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → 𝑆 (𝑄 𝑆))
193, 9, 5, 18syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆 (𝑄 𝑆))
20 simp1r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑊𝐻)
21 cdlemn10.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
221, 21lhpbase 40000 . . . . . 6 (𝑊𝐻𝑊𝐵)
2320, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑊𝐵)
242, 10, 6hlatlej1 39376 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → 𝑄 (𝑄 𝑆))
253, 9, 5, 24syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑄 (𝑄 𝑆))
26 eqid 2737 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
271, 2, 10, 26, 6atmod3i1 39866 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑄 𝑆) ∈ 𝐵𝑊𝐵) ∧ 𝑄 (𝑄 𝑆)) → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) = ((𝑄 𝑆)(meet‘𝐾)(𝑄 𝑊)))
283, 9, 12, 23, 25, 27syl131anc 1385 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) = ((𝑄 𝑆)(meet‘𝐾)(𝑄 𝑊)))
29 simp1 1137 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
30 simp21 1207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
31 eqid 2737 . . . . . . 7 (1.‘𝐾) = (1.‘𝐾)
322, 10, 31, 6, 21lhpjat2 40023 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄 𝑊) = (1.‘𝐾))
3329, 30, 32syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑊) = (1.‘𝐾))
3433oveq2d 7447 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)(𝑄 𝑊)) = ((𝑄 𝑆)(meet‘𝐾)(1.‘𝐾)))
35 hlol 39362 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
363, 35syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝐾 ∈ OL)
371, 26, 31olm11 39228 . . . . 5 ((𝐾 ∈ OL ∧ (𝑄 𝑆) ∈ 𝐵) → ((𝑄 𝑆)(meet‘𝐾)(1.‘𝐾)) = (𝑄 𝑆))
3836, 12, 37syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)(1.‘𝐾)) = (𝑄 𝑆))
3928, 34, 383eqtrrd 2782 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑆) = (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)))
40 simp31 1210 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑔𝑇)
41 cdlemn10.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
42 cdlemn10.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
432, 10, 26, 6, 21, 41, 42trlval2 40165 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑅𝑔) = ((𝑄 (𝑔𝑄))(meet‘𝐾)𝑊))
4429, 40, 30, 43syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑅𝑔) = ((𝑄 (𝑔𝑄))(meet‘𝐾)𝑊))
45 simp32 1211 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑔𝑄) = 𝑆)
4645oveq2d 7447 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 (𝑔𝑄)) = (𝑄 𝑆))
4746oveq1d 7446 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 (𝑔𝑄))(meet‘𝐾)𝑊) = ((𝑄 𝑆)(meet‘𝐾)𝑊))
4844, 47eqtrd 2777 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑅𝑔) = ((𝑄 𝑆)(meet‘𝐾)𝑊))
49 simp33 1212 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑅𝑔) 𝑋)
5048, 49eqbrtrrd 5167 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)𝑊) 𝑋)
511, 26latmcl 18485 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 𝑆) ∈ 𝐵𝑊𝐵) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ∈ 𝐵)
524, 12, 23, 51syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ∈ 𝐵)
531, 2, 10latjlej2 18499 . . . . 5 ((𝐾 ∈ Lat ∧ (((𝑄 𝑆)(meet‘𝐾)𝑊) ∈ 𝐵𝑋𝐵𝑄𝐵)) → (((𝑄 𝑆)(meet‘𝐾)𝑊) 𝑋 → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) (𝑄 𝑋)))
544, 52, 15, 14, 53syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (((𝑄 𝑆)(meet‘𝐾)𝑊) 𝑋 → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) (𝑄 𝑋)))
5550, 54mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) (𝑄 𝑋))
5639, 55eqbrtrd 5165 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑆) (𝑄 𝑋))
571, 2, 4, 8, 12, 17, 19, 56lattrd 18491 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆 (𝑄 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  joincjn 18357  meetcmee 18358  1.cp1 18469  Latclat 18476  OLcol 39175  Atomscatm 39264  HLchlt 39351  LHypclh 39986  LTrncltrn 40103  trLctrl 40160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-lhyp 39990  df-laut 39991  df-ldil 40106  df-ltrn 40107  df-trl 40161
This theorem is referenced by:  cdlemn11pre  41212
  Copyright terms: Public domain W3C validator