Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn10 Structured version   Visualization version   GIF version

Theorem cdlemn10 41167
Description: Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 27-Feb-2014.)
Hypotheses
Ref Expression
cdlemn10.b 𝐵 = (Base‘𝐾)
cdlemn10.l = (le‘𝐾)
cdlemn10.j = (join‘𝐾)
cdlemn10.a 𝐴 = (Atoms‘𝐾)
cdlemn10.h 𝐻 = (LHyp‘𝐾)
cdlemn10.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn10.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemn10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆 (𝑄 𝑋))

Proof of Theorem cdlemn10
StepHypRef Expression
1 cdlemn10.b . 2 𝐵 = (Base‘𝐾)
2 cdlemn10.l . 2 = (le‘𝐾)
3 simp1l 1197 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝐾 ∈ HL)
43hllatd 39324 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝐾 ∈ Lat)
5 simp22l 1292 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆𝐴)
6 cdlemn10.a . . . 4 𝐴 = (Atoms‘𝐾)
71, 6atbase 39249 . . 3 (𝑆𝐴𝑆𝐵)
85, 7syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆𝐵)
9 simp21l 1290 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑄𝐴)
10 cdlemn10.j . . . 4 = (join‘𝐾)
111, 10, 6hlatjcl 39327 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → (𝑄 𝑆) ∈ 𝐵)
123, 9, 5, 11syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑆) ∈ 𝐵)
131, 6atbase 39249 . . . 4 (𝑄𝐴𝑄𝐵)
149, 13syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑄𝐵)
15 simp23l 1294 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑋𝐵)
161, 10latjcl 18453 . . 3 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄 𝑋) ∈ 𝐵)
174, 14, 15, 16syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑋) ∈ 𝐵)
182, 10, 6hlatlej2 39336 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → 𝑆 (𝑄 𝑆))
193, 9, 5, 18syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆 (𝑄 𝑆))
20 simp1r 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑊𝐻)
21 cdlemn10.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
221, 21lhpbase 39959 . . . . . 6 (𝑊𝐻𝑊𝐵)
2320, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑊𝐵)
242, 10, 6hlatlej1 39335 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → 𝑄 (𝑄 𝑆))
253, 9, 5, 24syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑄 (𝑄 𝑆))
26 eqid 2734 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
271, 2, 10, 26, 6atmod3i1 39825 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑄 𝑆) ∈ 𝐵𝑊𝐵) ∧ 𝑄 (𝑄 𝑆)) → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) = ((𝑄 𝑆)(meet‘𝐾)(𝑄 𝑊)))
283, 9, 12, 23, 25, 27syl131anc 1384 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) = ((𝑄 𝑆)(meet‘𝐾)(𝑄 𝑊)))
29 simp1 1136 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
30 simp21 1206 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
31 eqid 2734 . . . . . . 7 (1.‘𝐾) = (1.‘𝐾)
322, 10, 31, 6, 21lhpjat2 39982 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄 𝑊) = (1.‘𝐾))
3329, 30, 32syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑊) = (1.‘𝐾))
3433oveq2d 7429 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)(𝑄 𝑊)) = ((𝑄 𝑆)(meet‘𝐾)(1.‘𝐾)))
35 hlol 39321 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
363, 35syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝐾 ∈ OL)
371, 26, 31olm11 39187 . . . . 5 ((𝐾 ∈ OL ∧ (𝑄 𝑆) ∈ 𝐵) → ((𝑄 𝑆)(meet‘𝐾)(1.‘𝐾)) = (𝑄 𝑆))
3836, 12, 37syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)(1.‘𝐾)) = (𝑄 𝑆))
3928, 34, 383eqtrrd 2774 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑆) = (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)))
40 simp31 1209 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑔𝑇)
41 cdlemn10.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
42 cdlemn10.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
432, 10, 26, 6, 21, 41, 42trlval2 40124 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑅𝑔) = ((𝑄 (𝑔𝑄))(meet‘𝐾)𝑊))
4429, 40, 30, 43syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑅𝑔) = ((𝑄 (𝑔𝑄))(meet‘𝐾)𝑊))
45 simp32 1210 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑔𝑄) = 𝑆)
4645oveq2d 7429 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 (𝑔𝑄)) = (𝑄 𝑆))
4746oveq1d 7428 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 (𝑔𝑄))(meet‘𝐾)𝑊) = ((𝑄 𝑆)(meet‘𝐾)𝑊))
4844, 47eqtrd 2769 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑅𝑔) = ((𝑄 𝑆)(meet‘𝐾)𝑊))
49 simp33 1211 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑅𝑔) 𝑋)
5048, 49eqbrtrrd 5147 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)𝑊) 𝑋)
511, 26latmcl 18454 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 𝑆) ∈ 𝐵𝑊𝐵) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ∈ 𝐵)
524, 12, 23, 51syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ∈ 𝐵)
531, 2, 10latjlej2 18468 . . . . 5 ((𝐾 ∈ Lat ∧ (((𝑄 𝑆)(meet‘𝐾)𝑊) ∈ 𝐵𝑋𝐵𝑄𝐵)) → (((𝑄 𝑆)(meet‘𝐾)𝑊) 𝑋 → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) (𝑄 𝑋)))
544, 52, 15, 14, 53syl13anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (((𝑄 𝑆)(meet‘𝐾)𝑊) 𝑋 → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) (𝑄 𝑋)))
5550, 54mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 ((𝑄 𝑆)(meet‘𝐾)𝑊)) (𝑄 𝑋))
5639, 55eqbrtrd 5145 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → (𝑄 𝑆) (𝑄 𝑋))
571, 2, 4, 8, 12, 17, 19, 56lattrd 18460 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑔𝑇 ∧ (𝑔𝑄) = 𝑆 ∧ (𝑅𝑔) 𝑋)) → 𝑆 (𝑄 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5123  cfv 6541  (class class class)co 7413  Basecbs 17229  lecple 17280  joincjn 18327  meetcmee 18328  1.cp1 18438  Latclat 18445  OLcol 39134  Atomscatm 39223  HLchlt 39310  LHypclh 39945  LTrncltrn 40062  trLctrl 40119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-map 8850  df-proset 18310  df-poset 18329  df-plt 18344  df-lub 18360  df-glb 18361  df-join 18362  df-meet 18363  df-p0 18439  df-p1 18440  df-lat 18446  df-clat 18513  df-oposet 39136  df-ol 39138  df-oml 39139  df-covers 39226  df-ats 39227  df-atl 39258  df-cvlat 39282  df-hlat 39311  df-psubsp 39464  df-pmap 39465  df-padd 39757  df-lhyp 39949  df-laut 39950  df-ldil 40065  df-ltrn 40066  df-trl 40120
This theorem is referenced by:  cdlemn11pre  41171
  Copyright terms: Public domain W3C validator