Proof of Theorem dihord1
Step | Hyp | Ref
| Expression |
1 | | simp11 1202 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp13 1204 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
3 | | simp12 1203 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
4 | | simp11l 1283 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝐾 ∈ HL) |
5 | 4 | hllatd 37378 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝐾 ∈ Lat) |
6 | | simp2r 1199 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝑌 ∈ 𝐵) |
7 | | simp11r 1284 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝑊 ∈ 𝐻) |
8 | | dihjust.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
9 | | dihjust.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
10 | 8, 9 | lhpbase 38012 |
. . . . . 6
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
11 | 7, 10 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝑊 ∈ 𝐵) |
12 | | dihjust.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
13 | 8, 12 | latmcl 18158 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
14 | 5, 6, 11, 13 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
15 | | dihjust.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
16 | 8, 15, 12 | latmle2 18183 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∧ 𝑊) ≤ 𝑊) |
17 | 5, 6, 11, 16 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑌 ∧ 𝑊) ≤ 𝑊) |
18 | 14, 17 | jca 512 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → ((𝑌 ∧ 𝑊) ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ≤ 𝑊)) |
19 | | simp12l 1285 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝑄 ∈ 𝐴) |
20 | | dihjust.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
21 | 8, 20 | atbase 37303 |
. . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
22 | 19, 21 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝑄 ∈ 𝐵) |
23 | | simp2l 1198 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝑋 ∈ 𝐵) |
24 | 8, 12 | latmcl 18158 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
25 | 5, 23, 11, 24 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
26 | | dihjust.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
27 | 8, 26 | latjcl 18157 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → (𝑄 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵) |
28 | 5, 22, 25, 27 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑄 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵) |
29 | 8, 15, 26 | latlej1 18166 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → 𝑄 ≤ (𝑄 ∨ (𝑋 ∧ 𝑊))) |
30 | 5, 22, 25, 29 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝑄 ≤ (𝑄 ∨ (𝑋 ∧ 𝑊))) |
31 | | simp31 1208 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
32 | | simp33 1210 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝑋 ≤ 𝑌) |
33 | 31, 32 | eqbrtrd 5096 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑄 ∨ (𝑋 ∧ 𝑊)) ≤ 𝑌) |
34 | 8, 15, 5, 22, 28, 6, 30, 33 | lattrd 18164 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝑄 ≤ 𝑌) |
35 | | simp32 1209 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌) |
36 | 34, 35 | breqtrrd 5102 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝑄 ≤ (𝑅 ∨ (𝑌 ∧ 𝑊))) |
37 | | dihjust.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
38 | | dihjust.s |
. . . 4
⊢ ⊕ =
(LSSum‘𝑈) |
39 | | dihjust.i |
. . . 4
⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
40 | | dihjust.J |
. . . 4
⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) |
41 | 8, 15, 26, 20, 9, 37, 38, 39, 40 | cdlemn5 39215 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ ((𝑌 ∧ 𝑊) ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ≤ 𝑊)) ∧ 𝑄 ≤ (𝑅 ∨ (𝑌 ∧ 𝑊))) → (𝐽‘𝑄) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) |
42 | 1, 2, 3, 18, 36, 41 | syl131anc 1382 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝐽‘𝑄) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) |
43 | 8, 15, 12 | latmlem1 18187 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊))) |
44 | 5, 23, 6, 11, 43 | syl13anc 1371 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊))) |
45 | 32, 44 | mpd 15 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊)) |
46 | 8, 15, 12 | latmle2 18183 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
47 | 5, 23, 11, 46 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
48 | 8, 15, 9, 39 | dibord 39173 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ≤ 𝑊) ∧ ((𝑌 ∧ 𝑊) ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ≤ 𝑊)) → ((𝐼‘(𝑋 ∧ 𝑊)) ⊆ (𝐼‘(𝑌 ∧ 𝑊)) ↔ (𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊))) |
49 | 1, 25, 47, 14, 17, 48 | syl122anc 1378 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → ((𝐼‘(𝑋 ∧ 𝑊)) ⊆ (𝐼‘(𝑌 ∧ 𝑊)) ↔ (𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊))) |
50 | 45, 49 | mpbird 256 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝐼‘(𝑋 ∧ 𝑊)) ⊆ (𝐼‘(𝑌 ∧ 𝑊))) |
51 | 9, 37, 1 | dvhlmod 39124 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝑈 ∈ LMod) |
52 | | eqid 2738 |
. . . . . . 7
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
53 | 52 | lsssssubg 20220 |
. . . . . 6
⊢ (𝑈 ∈ LMod →
(LSubSp‘𝑈) ⊆
(SubGrp‘𝑈)) |
54 | 51, 53 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈)) |
55 | 15, 20, 9, 37, 40, 52 | diclss 39207 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐽‘𝑅) ∈ (LSubSp‘𝑈)) |
56 | 1, 2, 55 | syl2anc 584 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝐽‘𝑅) ∈ (LSubSp‘𝑈)) |
57 | 54, 56 | sseldd 3922 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝐽‘𝑅) ∈ (SubGrp‘𝑈)) |
58 | 8, 15, 9, 37, 39, 52 | diblss 39184 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑌 ∧ 𝑊) ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ≤ 𝑊)) → (𝐼‘(𝑌 ∧ 𝑊)) ∈ (LSubSp‘𝑈)) |
59 | 1, 14, 17, 58 | syl12anc 834 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝐼‘(𝑌 ∧ 𝑊)) ∈ (LSubSp‘𝑈)) |
60 | 54, 59 | sseldd 3922 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝐼‘(𝑌 ∧ 𝑊)) ∈ (SubGrp‘𝑈)) |
61 | 38 | lsmub2 19263 |
. . . 4
⊢ (((𝐽‘𝑅) ∈ (SubGrp‘𝑈) ∧ (𝐼‘(𝑌 ∧ 𝑊)) ∈ (SubGrp‘𝑈)) → (𝐼‘(𝑌 ∧ 𝑊)) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) |
62 | 57, 60, 61 | syl2anc 584 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝐼‘(𝑌 ∧ 𝑊)) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) |
63 | 50, 62 | sstrd 3931 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝐼‘(𝑋 ∧ 𝑊)) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) |
64 | 15, 20, 9, 37, 40, 52 | diclss 39207 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐽‘𝑄) ∈ (LSubSp‘𝑈)) |
65 | 1, 3, 64 | syl2anc 584 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝐽‘𝑄) ∈ (LSubSp‘𝑈)) |
66 | 54, 65 | sseldd 3922 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝐽‘𝑄) ∈ (SubGrp‘𝑈)) |
67 | 8, 15, 9, 37, 39, 52 | diblss 39184 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ≤ 𝑊)) → (𝐼‘(𝑋 ∧ 𝑊)) ∈ (LSubSp‘𝑈)) |
68 | 1, 25, 47, 67 | syl12anc 834 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝐼‘(𝑋 ∧ 𝑊)) ∈ (LSubSp‘𝑈)) |
69 | 54, 68 | sseldd 3922 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝐼‘(𝑋 ∧ 𝑊)) ∈ (SubGrp‘𝑈)) |
70 | 52, 38 | lsmcl 20345 |
. . . . 5
⊢ ((𝑈 ∈ LMod ∧ (𝐽‘𝑅) ∈ (LSubSp‘𝑈) ∧ (𝐼‘(𝑌 ∧ 𝑊)) ∈ (LSubSp‘𝑈)) → ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∈ (LSubSp‘𝑈)) |
71 | 51, 56, 59, 70 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∈ (LSubSp‘𝑈)) |
72 | 54, 71 | sseldd 3922 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∈ (SubGrp‘𝑈)) |
73 | 38 | lsmlub 19270 |
. . 3
⊢ (((𝐽‘𝑄) ∈ (SubGrp‘𝑈) ∧ (𝐼‘(𝑋 ∧ 𝑊)) ∈ (SubGrp‘𝑈) ∧ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∈ (SubGrp‘𝑈)) → (((𝐽‘𝑄) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ (𝐼‘(𝑋 ∧ 𝑊)) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ↔ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) |
74 | 66, 69, 72, 73 | syl3anc 1370 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (((𝐽‘𝑄) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ (𝐼‘(𝑋 ∧ 𝑊)) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ↔ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) |
75 | 42, 63, 74 | mpbi2and 709 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) |