Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihord1 Structured version   Visualization version   GIF version

Theorem dihord1 38779
Description: Part of proof after Lemma N of [Crawley] p. 122. Forward ordering property. TODO: change (𝑄 (𝑋 𝑊)) = 𝑋 to 𝑄 𝑋 using lhpmcvr3 37586, here and all theorems below. (Contributed by NM, 2-Mar-2014.)
Hypotheses
Ref Expression
dihjust.b 𝐵 = (Base‘𝐾)
dihjust.l = (le‘𝐾)
dihjust.j = (join‘𝐾)
dihjust.m = (meet‘𝐾)
dihjust.a 𝐴 = (Atoms‘𝐾)
dihjust.h 𝐻 = (LHyp‘𝐾)
dihjust.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
dihjust.J 𝐽 = ((DIsoC‘𝐾)‘𝑊)
dihjust.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihjust.s = (LSSum‘𝑈)
Assertion
Ref Expression
dihord1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))

Proof of Theorem dihord1
StepHypRef Expression
1 simp11 1201 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp13 1203 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
3 simp12 1202 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simp11l 1282 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝐾 ∈ HL)
54hllatd 36925 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝐾 ∈ Lat)
6 simp2r 1198 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑌𝐵)
7 simp11r 1283 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑊𝐻)
8 dihjust.b . . . . . . 7 𝐵 = (Base‘𝐾)
9 dihjust.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
108, 9lhpbase 37559 . . . . . 6 (𝑊𝐻𝑊𝐵)
117, 10syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑊𝐵)
12 dihjust.m . . . . . 6 = (meet‘𝐾)
138, 12latmcl 17713 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
145, 6, 11, 13syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑌 𝑊) ∈ 𝐵)
15 dihjust.l . . . . . 6 = (le‘𝐾)
168, 15, 12latmle2 17738 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) 𝑊)
175, 6, 11, 16syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑌 𝑊) 𝑊)
1814, 17jca 516 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → ((𝑌 𝑊) ∈ 𝐵 ∧ (𝑌 𝑊) 𝑊))
19 simp12l 1284 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑄𝐴)
20 dihjust.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
218, 20atbase 36850 . . . . . 6 (𝑄𝐴𝑄𝐵)
2219, 21syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑄𝐵)
23 simp2l 1197 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑋𝐵)
248, 12latmcl 17713 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
255, 23, 11, 24syl3anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑋 𝑊) ∈ 𝐵)
26 dihjust.j . . . . . . 7 = (join‘𝐾)
278, 26latjcl 17712 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → (𝑄 (𝑋 𝑊)) ∈ 𝐵)
285, 22, 25, 27syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑄 (𝑋 𝑊)) ∈ 𝐵)
298, 15, 26latlej1 17721 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → 𝑄 (𝑄 (𝑋 𝑊)))
305, 22, 25, 29syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑄 (𝑄 (𝑋 𝑊)))
31 simp31 1207 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑄 (𝑋 𝑊)) = 𝑋)
32 simp33 1209 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑋 𝑌)
3331, 32eqbrtrd 5047 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑄 (𝑋 𝑊)) 𝑌)
348, 15, 5, 22, 28, 6, 30, 33lattrd 17719 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑄 𝑌)
35 simp32 1208 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑅 (𝑌 𝑊)) = 𝑌)
3634, 35breqtrrd 5053 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑄 (𝑅 (𝑌 𝑊)))
37 dihjust.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
38 dihjust.s . . . 4 = (LSSum‘𝑈)
39 dihjust.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
40 dihjust.J . . . 4 𝐽 = ((DIsoC‘𝐾)‘𝑊)
418, 15, 26, 20, 9, 37, 38, 39, 40cdlemn5 38762 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ ((𝑌 𝑊) ∈ 𝐵 ∧ (𝑌 𝑊) 𝑊)) ∧ 𝑄 (𝑅 (𝑌 𝑊))) → (𝐽𝑄) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))
421, 2, 3, 18, 36, 41syl131anc 1381 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐽𝑄) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))
438, 15, 12latmlem1 17742 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑊𝐵)) → (𝑋 𝑌 → (𝑋 𝑊) (𝑌 𝑊)))
445, 23, 6, 11, 43syl13anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑋 𝑌 → (𝑋 𝑊) (𝑌 𝑊)))
4532, 44mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑋 𝑊) (𝑌 𝑊))
468, 15, 12latmle2 17738 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
475, 23, 11, 46syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑋 𝑊) 𝑊)
488, 15, 9, 39dibord 38720 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊) ∧ ((𝑌 𝑊) ∈ 𝐵 ∧ (𝑌 𝑊) 𝑊)) → ((𝐼‘(𝑋 𝑊)) ⊆ (𝐼‘(𝑌 𝑊)) ↔ (𝑋 𝑊) (𝑌 𝑊)))
491, 25, 47, 14, 17, 48syl122anc 1377 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → ((𝐼‘(𝑋 𝑊)) ⊆ (𝐼‘(𝑌 𝑊)) ↔ (𝑋 𝑊) (𝑌 𝑊)))
5045, 49mpbird 260 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐼‘(𝑋 𝑊)) ⊆ (𝐼‘(𝑌 𝑊)))
519, 37, 1dvhlmod 38671 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑈 ∈ LMod)
52 eqid 2759 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5352lsssssubg 19783 . . . . . 6 (𝑈 ∈ LMod → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
5451, 53syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
5515, 20, 9, 37, 40, 52diclss 38754 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐽𝑅) ∈ (LSubSp‘𝑈))
561, 2, 55syl2anc 588 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐽𝑅) ∈ (LSubSp‘𝑈))
5754, 56sseldd 3889 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐽𝑅) ∈ (SubGrp‘𝑈))
588, 15, 9, 37, 39, 52diblss 38731 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑌 𝑊) ∈ 𝐵 ∧ (𝑌 𝑊) 𝑊)) → (𝐼‘(𝑌 𝑊)) ∈ (LSubSp‘𝑈))
591, 14, 17, 58syl12anc 836 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐼‘(𝑌 𝑊)) ∈ (LSubSp‘𝑈))
6054, 59sseldd 3889 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐼‘(𝑌 𝑊)) ∈ (SubGrp‘𝑈))
6138lsmub2 18835 . . . 4 (((𝐽𝑅) ∈ (SubGrp‘𝑈) ∧ (𝐼‘(𝑌 𝑊)) ∈ (SubGrp‘𝑈)) → (𝐼‘(𝑌 𝑊)) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))
6257, 60, 61syl2anc 588 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐼‘(𝑌 𝑊)) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))
6350, 62sstrd 3898 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐼‘(𝑋 𝑊)) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))
6415, 20, 9, 37, 40, 52diclss 38754 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐽𝑄) ∈ (LSubSp‘𝑈))
651, 3, 64syl2anc 588 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐽𝑄) ∈ (LSubSp‘𝑈))
6654, 65sseldd 3889 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐽𝑄) ∈ (SubGrp‘𝑈))
678, 15, 9, 37, 39, 52diblss 38731 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (𝐼‘(𝑋 𝑊)) ∈ (LSubSp‘𝑈))
681, 25, 47, 67syl12anc 836 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐼‘(𝑋 𝑊)) ∈ (LSubSp‘𝑈))
6954, 68sseldd 3889 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐼‘(𝑋 𝑊)) ∈ (SubGrp‘𝑈))
7052, 38lsmcl 19908 . . . . 5 ((𝑈 ∈ LMod ∧ (𝐽𝑅) ∈ (LSubSp‘𝑈) ∧ (𝐼‘(𝑌 𝑊)) ∈ (LSubSp‘𝑈)) → ((𝐽𝑅) (𝐼‘(𝑌 𝑊))) ∈ (LSubSp‘𝑈))
7151, 56, 59, 70syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → ((𝐽𝑅) (𝐼‘(𝑌 𝑊))) ∈ (LSubSp‘𝑈))
7254, 71sseldd 3889 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → ((𝐽𝑅) (𝐼‘(𝑌 𝑊))) ∈ (SubGrp‘𝑈))
7338lsmlub 18842 . . 3 (((𝐽𝑄) ∈ (SubGrp‘𝑈) ∧ (𝐼‘(𝑋 𝑊)) ∈ (SubGrp‘𝑈) ∧ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))) ∈ (SubGrp‘𝑈)) → (((𝐽𝑄) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))) ∧ (𝐼‘(𝑋 𝑊)) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊)))) ↔ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊)))))
7466, 69, 72, 73syl3anc 1369 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (((𝐽𝑄) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))) ∧ (𝐼‘(𝑋 𝑊)) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊)))) ↔ ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊)))))
7542, 63, 74mpbi2and 712 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑋𝐵𝑌𝐵) ∧ ((𝑄 (𝑋 𝑊)) = 𝑋 ∧ (𝑅 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → ((𝐽𝑄) (𝐼‘(𝑋 𝑊))) ⊆ ((𝐽𝑅) (𝐼‘(𝑌 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  wss 3854   class class class wbr 5025  cfv 6328  (class class class)co 7143  Basecbs 16526  lecple 16615  joincjn 17605  meetcmee 17606  Latclat 17706  SubGrpcsubg 18325  LSSumclsm 18811  LModclmod 19687  LSubSpclss 19756  Atomscatm 36824  HLchlt 36911  LHypclh 37545  DVecHcdvh 38639  DIsoBcdib 38699  DIsoCcdic 38733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637  ax-riotaBAD 36514
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-iin 4879  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-tpos 7895  df-undef 7942  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-2 11722  df-3 11723  df-4 11724  df-5 11725  df-6 11726  df-n0 11920  df-z 12006  df-uz 12268  df-fz 12925  df-struct 16528  df-ndx 16529  df-slot 16530  df-base 16532  df-sets 16533  df-ress 16534  df-plusg 16621  df-mulr 16622  df-sca 16624  df-vsca 16625  df-0g 16758  df-proset 17589  df-poset 17607  df-plt 17619  df-lub 17635  df-glb 17636  df-join 17637  df-meet 17638  df-p0 17700  df-p1 17701  df-lat 17707  df-clat 17769  df-mgm 17903  df-sgrp 17952  df-mnd 17963  df-submnd 18008  df-grp 18157  df-minusg 18158  df-sbg 18159  df-subg 18328  df-cntz 18499  df-lsm 18813  df-cmn 18960  df-abl 18961  df-mgp 19293  df-ur 19305  df-ring 19352  df-oppr 19429  df-dvdsr 19447  df-unit 19448  df-invr 19478  df-dvr 19489  df-drng 19557  df-lmod 19689  df-lss 19757  df-lsp 19797  df-lvec 19928  df-oposet 36737  df-ol 36739  df-oml 36740  df-covers 36827  df-ats 36828  df-atl 36859  df-cvlat 36883  df-hlat 36912  df-llines 37059  df-lplanes 37060  df-lvols 37061  df-lines 37062  df-psubsp 37064  df-pmap 37065  df-padd 37357  df-lhyp 37549  df-laut 37550  df-ldil 37665  df-ltrn 37666  df-trl 37720  df-tendo 38316  df-edring 38318  df-disoa 38590  df-dvech 38640  df-dib 38700  df-dic 38734
This theorem is referenced by:  dihord4  38819
  Copyright terms: Public domain W3C validator