Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn2 Structured version   Visualization version   GIF version

Theorem cdlemn2 38797
 Description: Part of proof of Lemma N of [Crawley] p. 121 line 30. (Contributed by NM, 21-Feb-2014.)
Hypotheses
Ref Expression
cdlemn2.b 𝐵 = (Base‘𝐾)
cdlemn2.l = (le‘𝐾)
cdlemn2.j = (join‘𝐾)
cdlemn2.a 𝐴 = (Atoms‘𝐾)
cdlemn2.h 𝐻 = (LHyp‘𝐾)
cdlemn2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn2.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemn2.f 𝐹 = (𝑇 (𝑄) = 𝑆)
Assertion
Ref Expression
cdlemn2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) 𝑋)
Distinct variable groups:   ,   𝐴,   ,𝐻   ,𝐾   𝑄,   𝑆,   𝑇,   ,𝑊
Allowed substitution hints:   𝐵()   𝑅()   𝐹()   ()   𝑋()

Proof of Theorem cdlemn2
StepHypRef Expression
1 simp1 1133 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp21 1203 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
3 simp22 1204 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
4 cdlemn2.l . . . . . . 7 = (le‘𝐾)
5 cdlemn2.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6 cdlemn2.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
7 cdlemn2.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemn2.f . . . . . . 7 𝐹 = (𝑇 (𝑄) = 𝑆)
94, 5, 6, 7, 8ltrniotacl 38181 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝐹𝑇)
101, 2, 3, 9syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝐹𝑇)
11 cdlemn2.j . . . . . 6 = (join‘𝐾)
12 eqid 2758 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
13 cdlemn2.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
144, 11, 12, 5, 6, 7, 13trlval2 37765 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑅𝐹) = ((𝑄 (𝐹𝑄))(meet‘𝐾)𝑊))
151, 10, 2, 14syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) = ((𝑄 (𝐹𝑄))(meet‘𝐾)𝑊))
164, 5, 6, 7, 8ltrniotaval 38183 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → (𝐹𝑄) = 𝑆)
171, 2, 3, 16syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝐹𝑄) = 𝑆)
1817oveq2d 7171 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄 (𝐹𝑄)) = (𝑄 𝑆))
1918oveq1d 7170 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 (𝐹𝑄))(meet‘𝐾)𝑊) = ((𝑄 𝑆)(meet‘𝐾)𝑊))
2015, 19eqtrd 2793 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) = ((𝑄 𝑆)(meet‘𝐾)𝑊))
21 simp1l 1194 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝐾 ∈ HL)
2221hllatd 36966 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝐾 ∈ Lat)
23 simp21l 1287 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑄𝐴)
24 cdlemn2.b . . . . . . . 8 𝐵 = (Base‘𝐾)
2524, 5atbase 36891 . . . . . . 7 (𝑄𝐴𝑄𝐵)
2623, 25syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑄𝐵)
27 simp23l 1291 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑋𝐵)
2824, 4, 11latlej1 17741 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → 𝑄 (𝑄 𝑋))
2922, 26, 27, 28syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑄 (𝑄 𝑋))
30 simp3 1135 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑆 (𝑄 𝑋))
31 simp22l 1289 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑆𝐴)
3224, 5atbase 36891 . . . . . . 7 (𝑆𝐴𝑆𝐵)
3331, 32syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑆𝐵)
3424, 11latjcl 17732 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄 𝑋) ∈ 𝐵)
3522, 26, 27, 34syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄 𝑋) ∈ 𝐵)
3624, 4, 11latjle12 17743 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄𝐵𝑆𝐵 ∧ (𝑄 𝑋) ∈ 𝐵)) → ((𝑄 (𝑄 𝑋) ∧ 𝑆 (𝑄 𝑋)) ↔ (𝑄 𝑆) (𝑄 𝑋)))
3722, 26, 33, 35, 36syl13anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 (𝑄 𝑋) ∧ 𝑆 (𝑄 𝑋)) ↔ (𝑄 𝑆) (𝑄 𝑋)))
3829, 30, 37mpbi2and 711 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄 𝑆) (𝑄 𝑋))
3924, 11, 5hlatjcl 36969 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → (𝑄 𝑆) ∈ 𝐵)
4021, 23, 31, 39syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄 𝑆) ∈ 𝐵)
41 simp1r 1195 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑊𝐻)
4224, 6lhpbase 37600 . . . . . 6 (𝑊𝐻𝑊𝐵)
4341, 42syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑊𝐵)
4424, 4, 12latmlem1 17762 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑄 𝑆) ∈ 𝐵 ∧ (𝑄 𝑋) ∈ 𝐵𝑊𝐵)) → ((𝑄 𝑆) (𝑄 𝑋) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ((𝑄 𝑋)(meet‘𝐾)𝑊)))
4522, 40, 35, 43, 44syl13anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 𝑆) (𝑄 𝑋) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ((𝑄 𝑋)(meet‘𝐾)𝑊)))
4638, 45mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ((𝑄 𝑋)(meet‘𝐾)𝑊))
4720, 46eqbrtrd 5057 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) ((𝑄 𝑋)(meet‘𝐾)𝑊))
48 simp23 1205 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑋𝐵𝑋 𝑊))
4924, 4, 11, 12, 5, 6lhple 37644 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → ((𝑄 𝑋)(meet‘𝐾)𝑊) = 𝑋)
501, 2, 48, 49syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 𝑋)(meet‘𝐾)𝑊) = 𝑋)
5147, 50breqtrd 5061 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) 𝑋)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   class class class wbr 5035  ‘cfv 6339  ℩crio 7112  (class class class)co 7155  Basecbs 16546  lecple 16635  joincjn 17625  meetcmee 17626  Latclat 17726  Atomscatm 36865  HLchlt 36952  LHypclh 37586  LTrncltrn 37703  trLctrl 37760 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-riotaBAD 36555 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7698  df-2nd 7699  df-undef 7954  df-map 8423  df-proset 17609  df-poset 17627  df-plt 17639  df-lub 17655  df-glb 17656  df-join 17657  df-meet 17658  df-p0 17720  df-p1 17721  df-lat 17727  df-clat 17789  df-oposet 36778  df-ol 36780  df-oml 36781  df-covers 36868  df-ats 36869  df-atl 36900  df-cvlat 36924  df-hlat 36953  df-llines 37100  df-lplanes 37101  df-lvols 37102  df-lines 37103  df-psubsp 37105  df-pmap 37106  df-padd 37398  df-lhyp 37590  df-laut 37591  df-ldil 37706  df-ltrn 37707  df-trl 37761 This theorem is referenced by:  cdlemn2a  38798
 Copyright terms: Public domain W3C validator