Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn2 Structured version   Visualization version   GIF version

Theorem cdlemn2 37862
Description: Part of proof of Lemma N of [Crawley] p. 121 line 30. (Contributed by NM, 21-Feb-2014.)
Hypotheses
Ref Expression
cdlemn2.b 𝐵 = (Base‘𝐾)
cdlemn2.l = (le‘𝐾)
cdlemn2.j = (join‘𝐾)
cdlemn2.a 𝐴 = (Atoms‘𝐾)
cdlemn2.h 𝐻 = (LHyp‘𝐾)
cdlemn2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn2.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemn2.f 𝐹 = (𝑇 (𝑄) = 𝑆)
Assertion
Ref Expression
cdlemn2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) 𝑋)
Distinct variable groups:   ,   𝐴,   ,𝐻   ,𝐾   𝑄,   𝑆,   𝑇,   ,𝑊
Allowed substitution hints:   𝐵()   𝑅()   𝐹()   ()   𝑋()

Proof of Theorem cdlemn2
StepHypRef Expression
1 simp1 1129 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp21 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
3 simp22 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
4 cdlemn2.l . . . . . . 7 = (le‘𝐾)
5 cdlemn2.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6 cdlemn2.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
7 cdlemn2.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemn2.f . . . . . . 7 𝐹 = (𝑇 (𝑄) = 𝑆)
94, 5, 6, 7, 8ltrniotacl 37246 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝐹𝑇)
101, 2, 3, 9syl3anc 1364 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝐹𝑇)
11 cdlemn2.j . . . . . 6 = (join‘𝐾)
12 eqid 2795 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
13 cdlemn2.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
144, 11, 12, 5, 6, 7, 13trlval2 36830 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑅𝐹) = ((𝑄 (𝐹𝑄))(meet‘𝐾)𝑊))
151, 10, 2, 14syl3anc 1364 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) = ((𝑄 (𝐹𝑄))(meet‘𝐾)𝑊))
164, 5, 6, 7, 8ltrniotaval 37248 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → (𝐹𝑄) = 𝑆)
171, 2, 3, 16syl3anc 1364 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝐹𝑄) = 𝑆)
1817oveq2d 7032 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄 (𝐹𝑄)) = (𝑄 𝑆))
1918oveq1d 7031 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 (𝐹𝑄))(meet‘𝐾)𝑊) = ((𝑄 𝑆)(meet‘𝐾)𝑊))
2015, 19eqtrd 2831 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) = ((𝑄 𝑆)(meet‘𝐾)𝑊))
21 simp1l 1190 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝐾 ∈ HL)
2221hllatd 36031 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝐾 ∈ Lat)
23 simp21l 1283 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑄𝐴)
24 cdlemn2.b . . . . . . . 8 𝐵 = (Base‘𝐾)
2524, 5atbase 35956 . . . . . . 7 (𝑄𝐴𝑄𝐵)
2623, 25syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑄𝐵)
27 simp23l 1287 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑋𝐵)
2824, 4, 11latlej1 17499 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → 𝑄 (𝑄 𝑋))
2922, 26, 27, 28syl3anc 1364 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑄 (𝑄 𝑋))
30 simp3 1131 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑆 (𝑄 𝑋))
31 simp22l 1285 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑆𝐴)
3224, 5atbase 35956 . . . . . . 7 (𝑆𝐴𝑆𝐵)
3331, 32syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑆𝐵)
3424, 11latjcl 17490 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄 𝑋) ∈ 𝐵)
3522, 26, 27, 34syl3anc 1364 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄 𝑋) ∈ 𝐵)
3624, 4, 11latjle12 17501 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄𝐵𝑆𝐵 ∧ (𝑄 𝑋) ∈ 𝐵)) → ((𝑄 (𝑄 𝑋) ∧ 𝑆 (𝑄 𝑋)) ↔ (𝑄 𝑆) (𝑄 𝑋)))
3722, 26, 33, 35, 36syl13anc 1365 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 (𝑄 𝑋) ∧ 𝑆 (𝑄 𝑋)) ↔ (𝑄 𝑆) (𝑄 𝑋)))
3829, 30, 37mpbi2and 708 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄 𝑆) (𝑄 𝑋))
3924, 11, 5hlatjcl 36034 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → (𝑄 𝑆) ∈ 𝐵)
4021, 23, 31, 39syl3anc 1364 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄 𝑆) ∈ 𝐵)
41 simp1r 1191 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑊𝐻)
4224, 6lhpbase 36665 . . . . . 6 (𝑊𝐻𝑊𝐵)
4341, 42syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑊𝐵)
4424, 4, 12latmlem1 17520 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑄 𝑆) ∈ 𝐵 ∧ (𝑄 𝑋) ∈ 𝐵𝑊𝐵)) → ((𝑄 𝑆) (𝑄 𝑋) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ((𝑄 𝑋)(meet‘𝐾)𝑊)))
4522, 40, 35, 43, 44syl13anc 1365 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 𝑆) (𝑄 𝑋) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ((𝑄 𝑋)(meet‘𝐾)𝑊)))
4638, 45mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ((𝑄 𝑋)(meet‘𝐾)𝑊))
4720, 46eqbrtrd 4984 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) ((𝑄 𝑋)(meet‘𝐾)𝑊))
48 simp23 1201 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑋𝐵𝑋 𝑊))
4924, 4, 11, 12, 5, 6lhple 36709 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → ((𝑄 𝑋)(meet‘𝐾)𝑊) = 𝑋)
501, 2, 48, 49syl3anc 1364 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 𝑋)(meet‘𝐾)𝑊) = 𝑋)
5147, 50breqtrd 4988 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081   class class class wbr 4962  cfv 6225  crio 6976  (class class class)co 7016  Basecbs 16312  lecple 16401  joincjn 17383  meetcmee 17384  Latclat 17484  Atomscatm 35930  HLchlt 36017  LHypclh 36651  LTrncltrn 36768  trLctrl 36825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-riotaBAD 35620
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-1st 7545  df-2nd 7546  df-undef 7790  df-map 8258  df-proset 17367  df-poset 17385  df-plt 17397  df-lub 17413  df-glb 17414  df-join 17415  df-meet 17416  df-p0 17478  df-p1 17479  df-lat 17485  df-clat 17547  df-oposet 35843  df-ol 35845  df-oml 35846  df-covers 35933  df-ats 35934  df-atl 35965  df-cvlat 35989  df-hlat 36018  df-llines 36165  df-lplanes 36166  df-lvols 36167  df-lines 36168  df-psubsp 36170  df-pmap 36171  df-padd 36463  df-lhyp 36655  df-laut 36656  df-ldil 36771  df-ltrn 36772  df-trl 36826
This theorem is referenced by:  cdlemn2a  37863
  Copyright terms: Public domain W3C validator