Proof of Theorem cdlemn2
Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp21 1204 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
3 | | simp22 1205 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) |
4 | | cdlemn2.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
5 | | cdlemn2.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
6 | | cdlemn2.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
7 | | cdlemn2.t |
. . . . . . 7
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
8 | | cdlemn2.f |
. . . . . . 7
⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑄) = 𝑆) |
9 | 4, 5, 6, 7, 8 | ltrniotacl 38520 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
10 | 1, 2, 3, 9 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → 𝐹 ∈ 𝑇) |
11 | | cdlemn2.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
12 | | eqid 2738 |
. . . . . 6
⊢
(meet‘𝐾) =
(meet‘𝐾) |
13 | | cdlemn2.r |
. . . . . 6
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
14 | 4, 11, 12, 5, 6, 7,
13 | trlval2 38104 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑅‘𝐹) = ((𝑄 ∨ (𝐹‘𝑄))(meet‘𝐾)𝑊)) |
15 | 1, 10, 2, 14 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝑅‘𝐹) = ((𝑄 ∨ (𝐹‘𝑄))(meet‘𝐾)𝑊)) |
16 | 4, 5, 6, 7, 8 | ltrniotaval 38522 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → (𝐹‘𝑄) = 𝑆) |
17 | 1, 2, 3, 16 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝐹‘𝑄) = 𝑆) |
18 | 17 | oveq2d 7271 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝑄 ∨ (𝐹‘𝑄)) = (𝑄 ∨ 𝑆)) |
19 | 18 | oveq1d 7270 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → ((𝑄 ∨ (𝐹‘𝑄))(meet‘𝐾)𝑊) = ((𝑄 ∨ 𝑆)(meet‘𝐾)𝑊)) |
20 | 15, 19 | eqtrd 2778 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝑅‘𝐹) = ((𝑄 ∨ 𝑆)(meet‘𝐾)𝑊)) |
21 | | simp1l 1195 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → 𝐾 ∈ HL) |
22 | 21 | hllatd 37305 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → 𝐾 ∈ Lat) |
23 | | simp21l 1288 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → 𝑄 ∈ 𝐴) |
24 | | cdlemn2.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐾) |
25 | 24, 5 | atbase 37230 |
. . . . . . 7
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
26 | 23, 25 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → 𝑄 ∈ 𝐵) |
27 | | simp23l 1292 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → 𝑋 ∈ 𝐵) |
28 | 24, 4, 11 | latlej1 18081 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 𝑄 ≤ (𝑄 ∨ 𝑋)) |
29 | 22, 26, 27, 28 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → 𝑄 ≤ (𝑄 ∨ 𝑋)) |
30 | | simp3 1136 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → 𝑆 ≤ (𝑄 ∨ 𝑋)) |
31 | | simp22l 1290 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → 𝑆 ∈ 𝐴) |
32 | 24, 5 | atbase 37230 |
. . . . . . 7
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ 𝐵) |
33 | 31, 32 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → 𝑆 ∈ 𝐵) |
34 | 24, 11 | latjcl 18072 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑄 ∨ 𝑋) ∈ 𝐵) |
35 | 22, 26, 27, 34 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝑄 ∨ 𝑋) ∈ 𝐵) |
36 | 24, 4, 11 | latjle12 18083 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ 𝐵 ∧ 𝑆 ∈ 𝐵 ∧ (𝑄 ∨ 𝑋) ∈ 𝐵)) → ((𝑄 ≤ (𝑄 ∨ 𝑋) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) ↔ (𝑄 ∨ 𝑆) ≤ (𝑄 ∨ 𝑋))) |
37 | 22, 26, 33, 35, 36 | syl13anc 1370 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → ((𝑄 ≤ (𝑄 ∨ 𝑋) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) ↔ (𝑄 ∨ 𝑆) ≤ (𝑄 ∨ 𝑋))) |
38 | 29, 30, 37 | mpbi2and 708 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝑄 ∨ 𝑆) ≤ (𝑄 ∨ 𝑋)) |
39 | 24, 11, 5 | hlatjcl 37308 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑄 ∨ 𝑆) ∈ 𝐵) |
40 | 21, 23, 31, 39 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝑄 ∨ 𝑆) ∈ 𝐵) |
41 | | simp1r 1196 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → 𝑊 ∈ 𝐻) |
42 | 24, 6 | lhpbase 37939 |
. . . . . 6
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
43 | 41, 42 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → 𝑊 ∈ 𝐵) |
44 | 24, 4, 12 | latmlem1 18102 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ ((𝑄 ∨ 𝑆) ∈ 𝐵 ∧ (𝑄 ∨ 𝑋) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑄 ∨ 𝑆) ≤ (𝑄 ∨ 𝑋) → ((𝑄 ∨ 𝑆)(meet‘𝐾)𝑊) ≤ ((𝑄 ∨ 𝑋)(meet‘𝐾)𝑊))) |
45 | 22, 40, 35, 43, 44 | syl13anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → ((𝑄 ∨ 𝑆) ≤ (𝑄 ∨ 𝑋) → ((𝑄 ∨ 𝑆)(meet‘𝐾)𝑊) ≤ ((𝑄 ∨ 𝑋)(meet‘𝐾)𝑊))) |
46 | 38, 45 | mpd 15 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → ((𝑄 ∨ 𝑆)(meet‘𝐾)𝑊) ≤ ((𝑄 ∨ 𝑋)(meet‘𝐾)𝑊)) |
47 | 20, 46 | eqbrtrd 5092 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝑅‘𝐹) ≤ ((𝑄 ∨ 𝑋)(meet‘𝐾)𝑊)) |
48 | | simp23 1206 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
49 | 24, 4, 11, 12, 5, 6 | lhple 37983 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((𝑄 ∨ 𝑋)(meet‘𝐾)𝑊) = 𝑋) |
50 | 1, 2, 48, 49 | syl3anc 1369 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → ((𝑄 ∨ 𝑋)(meet‘𝐾)𝑊) = 𝑋) |
51 | 47, 50 | breqtrd 5096 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝑅‘𝐹) ≤ 𝑋) |