Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn2 Structured version   Visualization version   GIF version

Theorem cdlemn2 39209
Description: Part of proof of Lemma N of [Crawley] p. 121 line 30. (Contributed by NM, 21-Feb-2014.)
Hypotheses
Ref Expression
cdlemn2.b 𝐵 = (Base‘𝐾)
cdlemn2.l = (le‘𝐾)
cdlemn2.j = (join‘𝐾)
cdlemn2.a 𝐴 = (Atoms‘𝐾)
cdlemn2.h 𝐻 = (LHyp‘𝐾)
cdlemn2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn2.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemn2.f 𝐹 = (𝑇 (𝑄) = 𝑆)
Assertion
Ref Expression
cdlemn2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) 𝑋)
Distinct variable groups:   ,   𝐴,   ,𝐻   ,𝐾   𝑄,   𝑆,   𝑇,   ,𝑊
Allowed substitution hints:   𝐵()   𝑅()   𝐹()   ()   𝑋()

Proof of Theorem cdlemn2
StepHypRef Expression
1 simp1 1135 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp21 1205 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
3 simp22 1206 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
4 cdlemn2.l . . . . . . 7 = (le‘𝐾)
5 cdlemn2.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6 cdlemn2.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
7 cdlemn2.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemn2.f . . . . . . 7 𝐹 = (𝑇 (𝑄) = 𝑆)
94, 5, 6, 7, 8ltrniotacl 38593 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝐹𝑇)
101, 2, 3, 9syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝐹𝑇)
11 cdlemn2.j . . . . . 6 = (join‘𝐾)
12 eqid 2738 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
13 cdlemn2.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
144, 11, 12, 5, 6, 7, 13trlval2 38177 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑅𝐹) = ((𝑄 (𝐹𝑄))(meet‘𝐾)𝑊))
151, 10, 2, 14syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) = ((𝑄 (𝐹𝑄))(meet‘𝐾)𝑊))
164, 5, 6, 7, 8ltrniotaval 38595 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → (𝐹𝑄) = 𝑆)
171, 2, 3, 16syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝐹𝑄) = 𝑆)
1817oveq2d 7291 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄 (𝐹𝑄)) = (𝑄 𝑆))
1918oveq1d 7290 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 (𝐹𝑄))(meet‘𝐾)𝑊) = ((𝑄 𝑆)(meet‘𝐾)𝑊))
2015, 19eqtrd 2778 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) = ((𝑄 𝑆)(meet‘𝐾)𝑊))
21 simp1l 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝐾 ∈ HL)
2221hllatd 37378 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝐾 ∈ Lat)
23 simp21l 1289 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑄𝐴)
24 cdlemn2.b . . . . . . . 8 𝐵 = (Base‘𝐾)
2524, 5atbase 37303 . . . . . . 7 (𝑄𝐴𝑄𝐵)
2623, 25syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑄𝐵)
27 simp23l 1293 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑋𝐵)
2824, 4, 11latlej1 18166 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → 𝑄 (𝑄 𝑋))
2922, 26, 27, 28syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑄 (𝑄 𝑋))
30 simp3 1137 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑆 (𝑄 𝑋))
31 simp22l 1291 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑆𝐴)
3224, 5atbase 37303 . . . . . . 7 (𝑆𝐴𝑆𝐵)
3331, 32syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑆𝐵)
3424, 11latjcl 18157 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄 𝑋) ∈ 𝐵)
3522, 26, 27, 34syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄 𝑋) ∈ 𝐵)
3624, 4, 11latjle12 18168 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄𝐵𝑆𝐵 ∧ (𝑄 𝑋) ∈ 𝐵)) → ((𝑄 (𝑄 𝑋) ∧ 𝑆 (𝑄 𝑋)) ↔ (𝑄 𝑆) (𝑄 𝑋)))
3722, 26, 33, 35, 36syl13anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 (𝑄 𝑋) ∧ 𝑆 (𝑄 𝑋)) ↔ (𝑄 𝑆) (𝑄 𝑋)))
3829, 30, 37mpbi2and 709 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄 𝑆) (𝑄 𝑋))
3924, 11, 5hlatjcl 37381 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → (𝑄 𝑆) ∈ 𝐵)
4021, 23, 31, 39syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄 𝑆) ∈ 𝐵)
41 simp1r 1197 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑊𝐻)
4224, 6lhpbase 38012 . . . . . 6 (𝑊𝐻𝑊𝐵)
4341, 42syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑊𝐵)
4424, 4, 12latmlem1 18187 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑄 𝑆) ∈ 𝐵 ∧ (𝑄 𝑋) ∈ 𝐵𝑊𝐵)) → ((𝑄 𝑆) (𝑄 𝑋) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ((𝑄 𝑋)(meet‘𝐾)𝑊)))
4522, 40, 35, 43, 44syl13anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 𝑆) (𝑄 𝑋) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ((𝑄 𝑋)(meet‘𝐾)𝑊)))
4638, 45mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ((𝑄 𝑋)(meet‘𝐾)𝑊))
4720, 46eqbrtrd 5096 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) ((𝑄 𝑋)(meet‘𝐾)𝑊))
48 simp23 1207 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑋𝐵𝑋 𝑊))
4924, 4, 11, 12, 5, 6lhple 38056 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → ((𝑄 𝑋)(meet‘𝐾)𝑊) = 𝑋)
501, 2, 48, 49syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 𝑋)(meet‘𝐾)𝑊) = 𝑋)
5147, 50breqtrd 5100 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  crio 7231  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  Latclat 18149  Atomscatm 37277  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  trLctrl 38172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-map 8617  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173
This theorem is referenced by:  cdlemn2a  39210
  Copyright terms: Public domain W3C validator