Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn2 Structured version   Visualization version   GIF version

Theorem cdlemn2 38333
Description: Part of proof of Lemma N of [Crawley] p. 121 line 30. (Contributed by NM, 21-Feb-2014.)
Hypotheses
Ref Expression
cdlemn2.b 𝐵 = (Base‘𝐾)
cdlemn2.l = (le‘𝐾)
cdlemn2.j = (join‘𝐾)
cdlemn2.a 𝐴 = (Atoms‘𝐾)
cdlemn2.h 𝐻 = (LHyp‘𝐾)
cdlemn2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn2.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemn2.f 𝐹 = (𝑇 (𝑄) = 𝑆)
Assertion
Ref Expression
cdlemn2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) 𝑋)
Distinct variable groups:   ,   𝐴,   ,𝐻   ,𝐾   𝑄,   𝑆,   𝑇,   ,𝑊
Allowed substitution hints:   𝐵()   𝑅()   𝐹()   ()   𝑋()

Proof of Theorem cdlemn2
StepHypRef Expression
1 simp1 1132 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp21 1202 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
3 simp22 1203 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
4 cdlemn2.l . . . . . . 7 = (le‘𝐾)
5 cdlemn2.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6 cdlemn2.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
7 cdlemn2.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemn2.f . . . . . . 7 𝐹 = (𝑇 (𝑄) = 𝑆)
94, 5, 6, 7, 8ltrniotacl 37717 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝐹𝑇)
101, 2, 3, 9syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝐹𝑇)
11 cdlemn2.j . . . . . 6 = (join‘𝐾)
12 eqid 2823 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
13 cdlemn2.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
144, 11, 12, 5, 6, 7, 13trlval2 37301 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑅𝐹) = ((𝑄 (𝐹𝑄))(meet‘𝐾)𝑊))
151, 10, 2, 14syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) = ((𝑄 (𝐹𝑄))(meet‘𝐾)𝑊))
164, 5, 6, 7, 8ltrniotaval 37719 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → (𝐹𝑄) = 𝑆)
171, 2, 3, 16syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝐹𝑄) = 𝑆)
1817oveq2d 7174 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄 (𝐹𝑄)) = (𝑄 𝑆))
1918oveq1d 7173 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 (𝐹𝑄))(meet‘𝐾)𝑊) = ((𝑄 𝑆)(meet‘𝐾)𝑊))
2015, 19eqtrd 2858 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) = ((𝑄 𝑆)(meet‘𝐾)𝑊))
21 simp1l 1193 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝐾 ∈ HL)
2221hllatd 36502 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝐾 ∈ Lat)
23 simp21l 1286 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑄𝐴)
24 cdlemn2.b . . . . . . . 8 𝐵 = (Base‘𝐾)
2524, 5atbase 36427 . . . . . . 7 (𝑄𝐴𝑄𝐵)
2623, 25syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑄𝐵)
27 simp23l 1290 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑋𝐵)
2824, 4, 11latlej1 17672 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → 𝑄 (𝑄 𝑋))
2922, 26, 27, 28syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑄 (𝑄 𝑋))
30 simp3 1134 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑆 (𝑄 𝑋))
31 simp22l 1288 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑆𝐴)
3224, 5atbase 36427 . . . . . . 7 (𝑆𝐴𝑆𝐵)
3331, 32syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑆𝐵)
3424, 11latjcl 17663 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄 𝑋) ∈ 𝐵)
3522, 26, 27, 34syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄 𝑋) ∈ 𝐵)
3624, 4, 11latjle12 17674 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄𝐵𝑆𝐵 ∧ (𝑄 𝑋) ∈ 𝐵)) → ((𝑄 (𝑄 𝑋) ∧ 𝑆 (𝑄 𝑋)) ↔ (𝑄 𝑆) (𝑄 𝑋)))
3722, 26, 33, 35, 36syl13anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 (𝑄 𝑋) ∧ 𝑆 (𝑄 𝑋)) ↔ (𝑄 𝑆) (𝑄 𝑋)))
3829, 30, 37mpbi2and 710 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄 𝑆) (𝑄 𝑋))
3924, 11, 5hlatjcl 36505 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → (𝑄 𝑆) ∈ 𝐵)
4021, 23, 31, 39syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑄 𝑆) ∈ 𝐵)
41 simp1r 1194 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑊𝐻)
4224, 6lhpbase 37136 . . . . . 6 (𝑊𝐻𝑊𝐵)
4341, 42syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → 𝑊𝐵)
4424, 4, 12latmlem1 17693 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑄 𝑆) ∈ 𝐵 ∧ (𝑄 𝑋) ∈ 𝐵𝑊𝐵)) → ((𝑄 𝑆) (𝑄 𝑋) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ((𝑄 𝑋)(meet‘𝐾)𝑊)))
4522, 40, 35, 43, 44syl13anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 𝑆) (𝑄 𝑋) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ((𝑄 𝑋)(meet‘𝐾)𝑊)))
4638, 45mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 𝑆)(meet‘𝐾)𝑊) ((𝑄 𝑋)(meet‘𝐾)𝑊))
4720, 46eqbrtrd 5090 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) ((𝑄 𝑋)(meet‘𝐾)𝑊))
48 simp23 1204 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑋𝐵𝑋 𝑊))
4924, 4, 11, 12, 5, 6lhple 37180 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → ((𝑄 𝑋)(meet‘𝐾)𝑊) = 𝑋)
501, 2, 48, 49syl3anc 1367 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → ((𝑄 𝑋)(meet‘𝐾)𝑊) = 𝑋)
5147, 50breqtrd 5094 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) ∧ 𝑆 (𝑄 𝑋)) → (𝑅𝐹) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5068  cfv 6357  crio 7115  (class class class)co 7158  Basecbs 16485  lecple 16574  joincjn 17556  meetcmee 17557  Latclat 17657  Atomscatm 36401  HLchlt 36488  LHypclh 37122  LTrncltrn 37239  trLctrl 37296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-riotaBAD 36091
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-undef 7941  df-map 8410  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-llines 36636  df-lplanes 36637  df-lvols 36638  df-lines 36639  df-psubsp 36641  df-pmap 36642  df-padd 36934  df-lhyp 37126  df-laut 37127  df-ldil 37242  df-ltrn 37243  df-trl 37297
This theorem is referenced by:  cdlemn2a  38334
  Copyright terms: Public domain W3C validator