MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  avgle Structured version   Visualization version   GIF version

Theorem avgle 12505
Description: The average of two numbers is less than or equal to at least one of them. (Contributed by NM, 9-Dec-2005.) (Revised by Mario Carneiro, 28-May-2014.)
Assertion
Ref Expression
avgle ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) ≤ 𝐴 ∨ ((𝐴 + 𝐵) / 2) ≤ 𝐵))

Proof of Theorem avgle
StepHypRef Expression
1 letric 11358 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵𝐴))
21orcomd 871 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴𝐴𝐵))
3 avgle2 12504 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 ↔ ((𝐵 + 𝐴) / 2) ≤ 𝐴))
43ancoms 458 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 ↔ ((𝐵 + 𝐴) / 2) ≤ 𝐴))
5 recn 11242 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
6 recn 11242 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
7 addcom 11444 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
85, 6, 7syl2an 596 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
98oveq1d 7445 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) / 2) = ((𝐵 + 𝐴) / 2))
109breq1d 5157 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) ≤ 𝐴 ↔ ((𝐵 + 𝐴) / 2) ≤ 𝐴))
114, 10bitr4d 282 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 ↔ ((𝐴 + 𝐵) / 2) ≤ 𝐴))
12 avgle2 12504 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ((𝐴 + 𝐵) / 2) ≤ 𝐵))
1311, 12orbi12d 918 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝐴𝐴𝐵) ↔ (((𝐴 + 𝐵) / 2) ≤ 𝐴 ∨ ((𝐴 + 𝐵) / 2) ≤ 𝐵)))
142, 13mpbid 232 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) ≤ 𝐴 ∨ ((𝐴 + 𝐵) / 2) ≤ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105   class class class wbr 5147  (class class class)co 7430  cc 11150  cr 11151   + caddc 11155  cle 11293   / cdiv 11917  2c2 12318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-2 12326
This theorem is referenced by:  facavg  14336
  Copyright terms: Public domain W3C validator