Proof of Theorem cdlemc1
| Step | Hyp | Ref
| Expression |
| 1 | | simp1l 1198 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ HL) |
| 2 | 1 | hllatd 39382 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ Lat) |
| 3 | | simp3l 1202 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) |
| 4 | | cdlemc1.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
| 5 | | cdlemc1.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
| 6 | 4, 5 | atbase 39307 |
. . . 4
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
| 7 | 3, 6 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐵) |
| 8 | | simp2 1137 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑋 ∈ 𝐵) |
| 9 | | cdlemc1.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
| 10 | 4, 9 | latjcl 18449 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∨ 𝑋) ∈ 𝐵) |
| 11 | 2, 7, 8, 10 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ 𝑋) ∈ 𝐵) |
| 12 | | simp1r 1199 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ 𝐻) |
| 13 | | cdlemc1.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
| 14 | 4, 13 | lhpbase 40017 |
. . . . 5
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 15 | 12, 14 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ 𝐵) |
| 16 | | cdlemc1.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
| 17 | 4, 16 | latmcl 18450 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑋) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((𝑃 ∨ 𝑋) ∧ 𝑊) ∈ 𝐵) |
| 18 | 2, 11, 15, 17 | syl3anc 1373 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑃 ∨ 𝑋) ∧ 𝑊) ∈ 𝐵) |
| 19 | 4, 9 | latjcom 18457 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ ((𝑃 ∨ 𝑋) ∧ 𝑊) ∈ 𝐵) → (𝑃 ∨ ((𝑃 ∨ 𝑋) ∧ 𝑊)) = (((𝑃 ∨ 𝑋) ∧ 𝑊) ∨ 𝑃)) |
| 20 | 2, 7, 18, 19 | syl3anc 1373 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ ((𝑃 ∨ 𝑋) ∧ 𝑊)) = (((𝑃 ∨ 𝑋) ∧ 𝑊) ∨ 𝑃)) |
| 21 | | cdlemc1.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
| 22 | 4, 21, 9 | latlej1 18458 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 𝑃 ≤ (𝑃 ∨ 𝑋)) |
| 23 | 2, 7, 8, 22 | syl3anc 1373 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ≤ (𝑃 ∨ 𝑋)) |
| 24 | 4, 21, 9, 16, 5 | atmod2i1 39880 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝑃 ∨ 𝑋) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝑃 ≤ (𝑃 ∨ 𝑋)) → (((𝑃 ∨ 𝑋) ∧ 𝑊) ∨ 𝑃) = ((𝑃 ∨ 𝑋) ∧ (𝑊 ∨ 𝑃))) |
| 25 | 1, 3, 11, 15, 23, 24 | syl131anc 1385 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝑃 ∨ 𝑋) ∧ 𝑊) ∨ 𝑃) = ((𝑃 ∨ 𝑋) ∧ (𝑊 ∨ 𝑃))) |
| 26 | | eqid 2735 |
. . . . . 6
⊢
(1.‘𝐾) =
(1.‘𝐾) |
| 27 | 21, 9, 26, 5, 13 | lhpjat1 40039 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ 𝑃) = (1.‘𝐾)) |
| 28 | 27 | 3adant2 1131 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ 𝑃) = (1.‘𝐾)) |
| 29 | 28 | oveq2d 7421 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑃 ∨ 𝑋) ∧ (𝑊 ∨ 𝑃)) = ((𝑃 ∨ 𝑋) ∧ (1.‘𝐾))) |
| 30 | | hlol 39379 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| 31 | 1, 30 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ OL) |
| 32 | 4, 16, 26 | olm11 39245 |
. . . 4
⊢ ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑋) ∈ 𝐵) → ((𝑃 ∨ 𝑋) ∧ (1.‘𝐾)) = (𝑃 ∨ 𝑋)) |
| 33 | 31, 11, 32 | syl2anc 584 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑃 ∨ 𝑋) ∧ (1.‘𝐾)) = (𝑃 ∨ 𝑋)) |
| 34 | 29, 33 | eqtrd 2770 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑃 ∨ 𝑋) ∧ (𝑊 ∨ 𝑃)) = (𝑃 ∨ 𝑋)) |
| 35 | 20, 25, 34 | 3eqtrd 2774 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ ((𝑃 ∨ 𝑋) ∧ 𝑊)) = (𝑃 ∨ 𝑋)) |