Proof of Theorem cdlemc1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1l 1198 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ HL) | 
| 2 | 1 | hllatd 39365 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ Lat) | 
| 3 |  | simp3l 1202 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) | 
| 4 |  | cdlemc1.b | . . . . 5
⊢ 𝐵 = (Base‘𝐾) | 
| 5 |  | cdlemc1.a | . . . . 5
⊢ 𝐴 = (Atoms‘𝐾) | 
| 6 | 4, 5 | atbase 39290 | . . . 4
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) | 
| 7 | 3, 6 | syl 17 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐵) | 
| 8 |  | simp2 1138 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | 
| 9 |  | cdlemc1.j | . . . . . 6
⊢  ∨ =
(join‘𝐾) | 
| 10 | 4, 9 | latjcl 18484 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∨ 𝑋) ∈ 𝐵) | 
| 11 | 2, 7, 8, 10 | syl3anc 1373 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ 𝑋) ∈ 𝐵) | 
| 12 |  | simp1r 1199 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ 𝐻) | 
| 13 |  | cdlemc1.h | . . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) | 
| 14 | 4, 13 | lhpbase 40000 | . . . . 5
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) | 
| 15 | 12, 14 | syl 17 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ 𝐵) | 
| 16 |  | cdlemc1.m | . . . . 5
⊢  ∧ =
(meet‘𝐾) | 
| 17 | 4, 16 | latmcl 18485 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑋) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((𝑃 ∨ 𝑋) ∧ 𝑊) ∈ 𝐵) | 
| 18 | 2, 11, 15, 17 | syl3anc 1373 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑃 ∨ 𝑋) ∧ 𝑊) ∈ 𝐵) | 
| 19 | 4, 9 | latjcom 18492 | . . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ ((𝑃 ∨ 𝑋) ∧ 𝑊) ∈ 𝐵) → (𝑃 ∨ ((𝑃 ∨ 𝑋) ∧ 𝑊)) = (((𝑃 ∨ 𝑋) ∧ 𝑊) ∨ 𝑃)) | 
| 20 | 2, 7, 18, 19 | syl3anc 1373 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ ((𝑃 ∨ 𝑋) ∧ 𝑊)) = (((𝑃 ∨ 𝑋) ∧ 𝑊) ∨ 𝑃)) | 
| 21 |  | cdlemc1.l | . . . . 5
⊢  ≤ =
(le‘𝐾) | 
| 22 | 4, 21, 9 | latlej1 18493 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 𝑃 ≤ (𝑃 ∨ 𝑋)) | 
| 23 | 2, 7, 8, 22 | syl3anc 1373 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ≤ (𝑃 ∨ 𝑋)) | 
| 24 | 4, 21, 9, 16, 5 | atmod2i1 39863 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝑃 ∨ 𝑋) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝑃 ≤ (𝑃 ∨ 𝑋)) → (((𝑃 ∨ 𝑋) ∧ 𝑊) ∨ 𝑃) = ((𝑃 ∨ 𝑋) ∧ (𝑊 ∨ 𝑃))) | 
| 25 | 1, 3, 11, 15, 23, 24 | syl131anc 1385 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝑃 ∨ 𝑋) ∧ 𝑊) ∨ 𝑃) = ((𝑃 ∨ 𝑋) ∧ (𝑊 ∨ 𝑃))) | 
| 26 |  | eqid 2737 | . . . . . 6
⊢
(1.‘𝐾) =
(1.‘𝐾) | 
| 27 | 21, 9, 26, 5, 13 | lhpjat1 40022 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ 𝑃) = (1.‘𝐾)) | 
| 28 | 27 | 3adant2 1132 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ 𝑃) = (1.‘𝐾)) | 
| 29 | 28 | oveq2d 7447 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑃 ∨ 𝑋) ∧ (𝑊 ∨ 𝑃)) = ((𝑃 ∨ 𝑋) ∧ (1.‘𝐾))) | 
| 30 |  | hlol 39362 | . . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | 
| 31 | 1, 30 | syl 17 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ OL) | 
| 32 | 4, 16, 26 | olm11 39228 | . . . 4
⊢ ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑋) ∈ 𝐵) → ((𝑃 ∨ 𝑋) ∧ (1.‘𝐾)) = (𝑃 ∨ 𝑋)) | 
| 33 | 31, 11, 32 | syl2anc 584 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑃 ∨ 𝑋) ∧ (1.‘𝐾)) = (𝑃 ∨ 𝑋)) | 
| 34 | 29, 33 | eqtrd 2777 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑃 ∨ 𝑋) ∧ (𝑊 ∨ 𝑃)) = (𝑃 ∨ 𝑋)) | 
| 35 | 20, 25, 34 | 3eqtrd 2781 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ ((𝑃 ∨ 𝑋) ∧ 𝑊)) = (𝑃 ∨ 𝑋)) |