Proof of Theorem trljat1
Step | Hyp | Ref
| Expression |
1 | | trljat.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
2 | | trljat.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
3 | | eqid 2738 |
. . . 4
⊢
(meet‘𝐾) =
(meet‘𝐾) |
4 | | trljat.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
5 | | trljat.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
6 | | trljat.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
7 | | trljat.r |
. . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
8 | 1, 2, 3, 4, 5, 6, 7 | trlval2 38104 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)𝑊)) |
9 | 8 | oveq1d 7270 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑅‘𝐹) ∨ 𝑃) = (((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)𝑊) ∨ 𝑃)) |
10 | | simp1l 1195 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ HL) |
11 | 10 | hllatd 37305 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ Lat) |
12 | | simp3l 1199 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) |
13 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
14 | 13, 4 | atbase 37230 |
. . . 4
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
15 | 12, 14 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ (Base‘𝐾)) |
16 | 13, 5, 6, 7 | trlcl 38105 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
17 | 16 | 3adant3 1130 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
18 | 13, 2 | latjcom 18080 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑅‘𝐹) ∈ (Base‘𝐾)) → (𝑃 ∨ (𝑅‘𝐹)) = ((𝑅‘𝐹) ∨ 𝑃)) |
19 | 11, 15, 17, 18 | syl3anc 1369 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝑅‘𝐹)) = ((𝑅‘𝐹) ∨ 𝑃)) |
20 | 13, 5, 6 | ltrncl 38066 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ (Base‘𝐾)) → (𝐹‘𝑃) ∈ (Base‘𝐾)) |
21 | 15, 20 | syld3an3 1407 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘𝑃) ∈ (Base‘𝐾)) |
22 | 13, 2 | latjcl 18072 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹‘𝑃) ∈ (Base‘𝐾)) → (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾)) |
23 | 11, 15, 21, 22 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾)) |
24 | | simp1r 1196 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ 𝐻) |
25 | 13, 5 | lhpbase 37939 |
. . . . 5
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
26 | 24, 25 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
27 | 13, 1, 2 | latlej1 18081 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹‘𝑃) ∈ (Base‘𝐾)) → 𝑃 ≤ (𝑃 ∨ (𝐹‘𝑃))) |
28 | 11, 15, 21, 27 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ≤ (𝑃 ∨ (𝐹‘𝑃))) |
29 | 13, 1, 2, 3, 4 | atmod2i1 37802 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑃 ≤ (𝑃 ∨ (𝐹‘𝑃))) → (((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)𝑊) ∨ 𝑃) = ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)(𝑊 ∨ 𝑃))) |
30 | 10, 12, 23, 26, 28, 29 | syl131anc 1381 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)𝑊) ∨ 𝑃) = ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)(𝑊 ∨ 𝑃))) |
31 | | eqid 2738 |
. . . . . 6
⊢
(1.‘𝐾) =
(1.‘𝐾) |
32 | 1, 2, 31, 4, 5 | lhpjat1 37961 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ 𝑃) = (1.‘𝐾)) |
33 | 32 | 3adant2 1129 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ 𝑃) = (1.‘𝐾)) |
34 | 33 | oveq2d 7271 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)(𝑊 ∨ 𝑃)) = ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)(1.‘𝐾))) |
35 | | hlol 37302 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
36 | 10, 35 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ OL) |
37 | 13, 3, 31 | olm11 37168 |
. . . 4
⊢ ((𝐾 ∈ OL ∧ (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾)) → ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)(1.‘𝐾)) = (𝑃 ∨ (𝐹‘𝑃))) |
38 | 36, 23, 37 | syl2anc 583 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)(1.‘𝐾)) = (𝑃 ∨ (𝐹‘𝑃))) |
39 | 30, 34, 38 | 3eqtrrd 2783 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝐹‘𝑃)) = (((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)𝑊) ∨ 𝑃)) |
40 | 9, 19, 39 | 3eqtr4d 2788 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝑅‘𝐹)) = (𝑃 ∨ (𝐹‘𝑃))) |