Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trljat1 Structured version   Visualization version   GIF version

Theorem trljat1 36753
Description: The value of a translation of an atom 𝑃 not under the fiducial co-atom 𝑊, joined with trace. Equation above Lemma C in [Crawley] p. 112. TODO: shorten with atmod3i1 36451? (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
trljat.l = (le‘𝐾)
trljat.j = (join‘𝐾)
trljat.a 𝐴 = (Atoms‘𝐾)
trljat.h 𝐻 = (LHyp‘𝐾)
trljat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trljat.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trljat1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐹)) = (𝑃 (𝐹𝑃)))

Proof of Theorem trljat1
StepHypRef Expression
1 trljat.l . . . 4 = (le‘𝐾)
2 trljat.j . . . 4 = (join‘𝐾)
3 eqid 2778 . . . 4 (meet‘𝐾) = (meet‘𝐾)
4 trljat.a . . . 4 𝐴 = (Atoms‘𝐾)
5 trljat.h . . . 4 𝐻 = (LHyp‘𝐾)
6 trljat.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
7 trljat.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7trlval2 36750 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
98oveq1d 6991 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑅𝐹) 𝑃) = (((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊) 𝑃))
10 simp1l 1177 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
1110hllatd 35951 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
12 simp3l 1181 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
13 eqid 2778 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
1413, 4atbase 35876 . . . 4 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1512, 14syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 ∈ (Base‘𝐾))
1613, 5, 6, 7trlcl 36751 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
17163adant3 1112 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) ∈ (Base‘𝐾))
1813, 2latjcom 17527 . . 3 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → (𝑃 (𝑅𝐹)) = ((𝑅𝐹) 𝑃))
1911, 15, 17, 18syl3anc 1351 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐹)) = ((𝑅𝐹) 𝑃))
2013, 5, 6ltrncl 36712 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃 ∈ (Base‘𝐾)) → (𝐹𝑃) ∈ (Base‘𝐾))
2115, 20syld3an3 1389 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ (Base‘𝐾))
2213, 2latjcl 17519 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹𝑃) ∈ (Base‘𝐾)) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
2311, 15, 21, 22syl3anc 1351 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
24 simp1r 1178 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
2513, 5lhpbase 36585 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2624, 25syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
2713, 1, 2latlej1 17528 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹𝑃) ∈ (Base‘𝐾)) → 𝑃 (𝑃 (𝐹𝑃)))
2811, 15, 21, 27syl3anc 1351 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 (𝑃 (𝐹𝑃)))
2913, 1, 2, 3, 4atmod2i1 36448 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 (𝐹𝑃))) → (((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊) 𝑃) = ((𝑃 (𝐹𝑃))(meet‘𝐾)(𝑊 𝑃)))
3010, 12, 23, 26, 28, 29syl131anc 1363 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊) 𝑃) = ((𝑃 (𝐹𝑃))(meet‘𝐾)(𝑊 𝑃)))
31 eqid 2778 . . . . . 6 (1.‘𝐾) = (1.‘𝐾)
321, 2, 31, 4, 5lhpjat1 36607 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑊 𝑃) = (1.‘𝐾))
33323adant2 1111 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑊 𝑃) = (1.‘𝐾))
3433oveq2d 6992 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐹𝑃))(meet‘𝐾)(𝑊 𝑃)) = ((𝑃 (𝐹𝑃))(meet‘𝐾)(1.‘𝐾)))
35 hlol 35948 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
3610, 35syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
3713, 3, 31olm11 35814 . . . 4 ((𝐾 ∈ OL ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃))(meet‘𝐾)(1.‘𝐾)) = (𝑃 (𝐹𝑃)))
3836, 23, 37syl2anc 576 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐹𝑃))(meet‘𝐾)(1.‘𝐾)) = (𝑃 (𝐹𝑃)))
3930, 34, 383eqtrrd 2819 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐹𝑃)) = (((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊) 𝑃))
409, 19, 393eqtr4d 2824 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐹)) = (𝑃 (𝐹𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050   class class class wbr 4929  cfv 6188  (class class class)co 6976  Basecbs 16339  lecple 16428  joincjn 17412  meetcmee 17413  1.cp1 17506  Latclat 17513  OLcol 35761  Atomscatm 35850  HLchlt 35937  LHypclh 36571  LTrncltrn 36688  trLctrl 36745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-iin 4795  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-1st 7501  df-2nd 7502  df-map 8208  df-proset 17396  df-poset 17414  df-plt 17426  df-lub 17442  df-glb 17443  df-join 17444  df-meet 17445  df-p0 17507  df-p1 17508  df-lat 17514  df-clat 17576  df-oposet 35763  df-ol 35765  df-oml 35766  df-covers 35853  df-ats 35854  df-atl 35885  df-cvlat 35909  df-hlat 35938  df-psubsp 36090  df-pmap 36091  df-padd 36383  df-lhyp 36575  df-laut 36576  df-ldil 36691  df-ltrn 36692  df-trl 36746
This theorem is referenced by:  trljat3  36755  trlval4  36775  trlval5  36776  cdlemc5  36782  cdlemk1  37418  cdlemk8  37425  cdlemki  37428  cdlemksv2  37434  cdlemk7  37435  cdlemk12  37437  cdlemk15  37442  cdlemk7u  37457  cdlemk12u  37459  cdlemk21N  37460  cdlemk20  37461  cdlemk22  37480  cdlemm10N  37705
  Copyright terms: Public domain W3C validator