Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trljat1 Structured version   Visualization version   GIF version

Theorem trljat1 40153
Description: The value of a translation of an atom 𝑃 not under the fiducial co-atom 𝑊, joined with trace. Equation above Lemma C in [Crawley] p. 112. TODO: shorten with atmod3i1 39851? (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
trljat.l = (le‘𝐾)
trljat.j = (join‘𝐾)
trljat.a 𝐴 = (Atoms‘𝐾)
trljat.h 𝐻 = (LHyp‘𝐾)
trljat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trljat.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trljat1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐹)) = (𝑃 (𝐹𝑃)))

Proof of Theorem trljat1
StepHypRef Expression
1 trljat.l . . . 4 = (le‘𝐾)
2 trljat.j . . . 4 = (join‘𝐾)
3 eqid 2729 . . . 4 (meet‘𝐾) = (meet‘𝐾)
4 trljat.a . . . 4 𝐴 = (Atoms‘𝐾)
5 trljat.h . . . 4 𝐻 = (LHyp‘𝐾)
6 trljat.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
7 trljat.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7trlval2 40150 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
98oveq1d 7384 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑅𝐹) 𝑃) = (((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊) 𝑃))
10 simp1l 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
1110hllatd 39350 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
12 simp3l 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
13 eqid 2729 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
1413, 4atbase 39275 . . . 4 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1512, 14syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 ∈ (Base‘𝐾))
1613, 5, 6, 7trlcl 40151 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
17163adant3 1132 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) ∈ (Base‘𝐾))
1813, 2latjcom 18388 . . 3 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → (𝑃 (𝑅𝐹)) = ((𝑅𝐹) 𝑃))
1911, 15, 17, 18syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐹)) = ((𝑅𝐹) 𝑃))
2013, 5, 6ltrncl 40112 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃 ∈ (Base‘𝐾)) → (𝐹𝑃) ∈ (Base‘𝐾))
2115, 20syld3an3 1411 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ (Base‘𝐾))
2213, 2latjcl 18380 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹𝑃) ∈ (Base‘𝐾)) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
2311, 15, 21, 22syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
24 simp1r 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
2513, 5lhpbase 39985 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2624, 25syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
2713, 1, 2latlej1 18389 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹𝑃) ∈ (Base‘𝐾)) → 𝑃 (𝑃 (𝐹𝑃)))
2811, 15, 21, 27syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 (𝑃 (𝐹𝑃)))
2913, 1, 2, 3, 4atmod2i1 39848 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 (𝐹𝑃))) → (((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊) 𝑃) = ((𝑃 (𝐹𝑃))(meet‘𝐾)(𝑊 𝑃)))
3010, 12, 23, 26, 28, 29syl131anc 1385 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊) 𝑃) = ((𝑃 (𝐹𝑃))(meet‘𝐾)(𝑊 𝑃)))
31 eqid 2729 . . . . . 6 (1.‘𝐾) = (1.‘𝐾)
321, 2, 31, 4, 5lhpjat1 40007 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑊 𝑃) = (1.‘𝐾))
33323adant2 1131 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑊 𝑃) = (1.‘𝐾))
3433oveq2d 7385 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐹𝑃))(meet‘𝐾)(𝑊 𝑃)) = ((𝑃 (𝐹𝑃))(meet‘𝐾)(1.‘𝐾)))
35 hlol 39347 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
3610, 35syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
3713, 3, 31olm11 39213 . . . 4 ((𝐾 ∈ OL ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃))(meet‘𝐾)(1.‘𝐾)) = (𝑃 (𝐹𝑃)))
3836, 23, 37syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐹𝑃))(meet‘𝐾)(1.‘𝐾)) = (𝑃 (𝐹𝑃)))
3930, 34, 383eqtrrd 2769 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐹𝑃)) = (((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊) 𝑃))
409, 19, 393eqtr4d 2774 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐹)) = (𝑃 (𝐹𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18252  meetcmee 18253  1.cp1 18363  Latclat 18372  OLcol 39160  Atomscatm 39249  HLchlt 39336  LHypclh 39971  LTrncltrn 40088  trLctrl 40145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-p1 18365  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-psubsp 39490  df-pmap 39491  df-padd 39783  df-lhyp 39975  df-laut 39976  df-ldil 40091  df-ltrn 40092  df-trl 40146
This theorem is referenced by:  trljat3  40155  trlval4  40175  trlval5  40176  cdlemc5  40182  cdlemk1  40818  cdlemk8  40825  cdlemki  40828  cdlemksv2  40834  cdlemk7  40835  cdlemk12  40837  cdlemk15  40842  cdlemk7u  40857  cdlemk12u  40859  cdlemk21N  40860  cdlemk20  40861  cdlemk22  40880  cdlemm10N  41105
  Copyright terms: Public domain W3C validator