![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpjat2 | Structured version Visualization version GIF version |
Description: The join of a co-atom (hyperplane) and an atom not under it is the lattice unity. (Contributed by NM, 4-Jun-2012.) |
Ref | Expression |
---|---|
lhpjat.l | β’ β€ = (leβπΎ) |
lhpjat.j | β’ β¨ = (joinβπΎ) |
lhpjat.u | β’ 1 = (1.βπΎ) |
lhpjat.a | β’ π΄ = (AtomsβπΎ) |
lhpjat.h | β’ π» = (LHypβπΎ) |
Ref | Expression |
---|---|
lhpjat2 | β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β¨ π) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 38228 | . . . 4 β’ (πΎ β HL β πΎ β Lat) | |
2 | 1 | ad2antrr 724 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β πΎ β Lat) |
3 | eqid 2732 | . . . . 5 β’ (BaseβπΎ) = (BaseβπΎ) | |
4 | lhpjat.a | . . . . 5 β’ π΄ = (AtomsβπΎ) | |
5 | 3, 4 | atbase 38154 | . . . 4 β’ (π β π΄ β π β (BaseβπΎ)) |
6 | 5 | ad2antrl 726 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β π β (BaseβπΎ)) |
7 | lhpjat.h | . . . . 5 β’ π» = (LHypβπΎ) | |
8 | 3, 7 | lhpbase 38864 | . . . 4 β’ (π β π» β π β (BaseβπΎ)) |
9 | 8 | ad2antlr 725 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β π β (BaseβπΎ)) |
10 | lhpjat.j | . . . 4 β’ β¨ = (joinβπΎ) | |
11 | 3, 10 | latjcom 18399 | . . 3 β’ ((πΎ β Lat β§ π β (BaseβπΎ) β§ π β (BaseβπΎ)) β (π β¨ π) = (π β¨ π)) |
12 | 2, 6, 9, 11 | syl3anc 1371 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β¨ π) = (π β¨ π)) |
13 | lhpjat.l | . . 3 β’ β€ = (leβπΎ) | |
14 | lhpjat.u | . . 3 β’ 1 = (1.βπΎ) | |
15 | 13, 10, 14, 4, 7 | lhpjat1 38886 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β¨ π) = 1 ) |
16 | 12, 15 | eqtrd 2772 | 1 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β¨ π) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 class class class wbr 5148 βcfv 6543 (class class class)co 7408 Basecbs 17143 lecple 17203 joincjn 18263 1.cp1 18376 Latclat 18383 Atomscatm 38128 HLchlt 38215 LHypclh 38850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-proset 18247 df-poset 18265 df-plt 18282 df-lub 18298 df-glb 18299 df-join 18300 df-meet 18301 df-p0 18377 df-p1 18378 df-lat 18384 df-clat 18451 df-oposet 38041 df-ol 38043 df-oml 38044 df-covers 38131 df-ats 38132 df-atl 38163 df-cvlat 38187 df-hlat 38216 df-lhyp 38854 |
This theorem is referenced by: lhpmcvr3 38891 cdleme0cp 39080 cdleme0cq 39081 cdleme1 39093 cdleme4 39104 cdleme5 39106 cdleme8 39116 cdleme9 39119 cdleme10 39120 cdleme22e 39210 cdleme22eALTN 39211 cdleme35b 39316 cdleme35e 39319 cdleme42a 39337 trlcoabs2N 39588 cdlemi1 39684 cdlemk4 39700 dia2dimlem1 39930 cdlemn10 40072 dihglbcpreN 40166 |
Copyright terms: Public domain | W3C validator |