Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpjat2 Structured version   Visualization version   GIF version

Theorem lhpjat2 40130
Description: The join of a co-atom (hyperplane) and an atom not under it is the lattice unity. (Contributed by NM, 4-Jun-2012.)
Hypotheses
Ref Expression
lhpjat.l = (le‘𝐾)
lhpjat.j = (join‘𝐾)
lhpjat.u 1 = (1.‘𝐾)
lhpjat.a 𝐴 = (Atoms‘𝐾)
lhpjat.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpjat2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = 1 )

Proof of Theorem lhpjat2
StepHypRef Expression
1 hllat 39472 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
21ad2antrr 726 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
3 eqid 2731 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
4 lhpjat.a . . . . 5 𝐴 = (Atoms‘𝐾)
53, 4atbase 39398 . . . 4 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
65ad2antrl 728 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 ∈ (Base‘𝐾))
7 lhpjat.h . . . . 5 𝐻 = (LHyp‘𝐾)
83, 7lhpbase 40107 . . . 4 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
98ad2antlr 727 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
10 lhpjat.j . . . 4 = (join‘𝐾)
113, 10latjcom 18353 . . 3 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑃 𝑊) = (𝑊 𝑃))
122, 6, 9, 11syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (𝑊 𝑃))
13 lhpjat.l . . 3 = (le‘𝐾)
14 lhpjat.u . . 3 1 = (1.‘𝐾)
1513, 10, 14, 4, 7lhpjat1 40129 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑊 𝑃) = 1 )
1612, 15eqtrd 2766 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = 1 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  1.cp1 18328  Latclat 18337  Atomscatm 39372  HLchlt 39459  LHypclh 40093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-lhyp 40097
This theorem is referenced by:  lhpmcvr3  40134  cdleme0cp  40323  cdleme0cq  40324  cdleme1  40336  cdleme4  40347  cdleme5  40349  cdleme8  40359  cdleme9  40362  cdleme10  40363  cdleme22e  40453  cdleme22eALTN  40454  cdleme35b  40559  cdleme35e  40562  cdleme42a  40580  trlcoabs2N  40831  cdlemi1  40927  cdlemk4  40943  dia2dimlem1  41173  cdlemn10  41315  dihglbcpreN  41409
  Copyright terms: Public domain W3C validator