MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onesuc Structured version   Visualization version   GIF version

Theorem onesuc 8529
Description: Exponentiation with a successor exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
onesuc ((๐ด โˆˆ On โˆง ๐ต โˆˆ ฯ‰) โ†’ (๐ด โ†‘o suc ๐ต) = ((๐ด โ†‘o ๐ต) ยทo ๐ด))

Proof of Theorem onesuc
Dummy variable ๐‘ฅ is distinct from all other variables.
StepHypRef Expression
1 limom 7870 . 2 Lim ฯ‰
2 frsuc 8436 . . 3 (๐ต โˆˆ ฯ‰ โ†’ ((rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o) โ†พ ฯ‰)โ€˜suc ๐ต) = ((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด))โ€˜((rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o) โ†พ ฯ‰)โ€˜๐ต)))
3 peano2 7880 . . . 4 (๐ต โˆˆ ฯ‰ โ†’ suc ๐ต โˆˆ ฯ‰)
43fvresd 6911 . . 3 (๐ต โˆˆ ฯ‰ โ†’ ((rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o) โ†พ ฯ‰)โ€˜suc ๐ต) = (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜suc ๐ต))
5 fvres 6910 . . . 4 (๐ต โˆˆ ฯ‰ โ†’ ((rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o) โ†พ ฯ‰)โ€˜๐ต) = (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜๐ต))
65fveq2d 6895 . . 3 (๐ต โˆˆ ฯ‰ โ†’ ((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด))โ€˜((rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o) โ†พ ฯ‰)โ€˜๐ต)) = ((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด))โ€˜(rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜๐ต)))
72, 4, 63eqtr3d 2780 . 2 (๐ต โˆˆ ฯ‰ โ†’ (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜suc ๐ต) = ((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด))โ€˜(rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜๐ต)))
81, 7oesuclem 8524 1 ((๐ด โˆˆ On โˆง ๐ต โˆˆ ฯ‰) โ†’ (๐ด โ†‘o suc ๐ต) = ((๐ด โ†‘o ๐ต) ยทo ๐ด))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 396   = wceq 1541   โˆˆ wcel 2106  Vcvv 3474   โ†ฆ cmpt 5231   โ†พ cres 5678  Oncon0 6364  suc csuc 6366  โ€˜cfv 6543  (class class class)co 7408  ฯ‰com 7854  reccrdg 8408  1oc1o 8458   ยทo comu 8463   โ†‘o coe 8464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-omul 8470  df-oexp 8471
This theorem is referenced by:  oe1  8543  nnesuc  8607
  Copyright terms: Public domain W3C validator