| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onesuc | Structured version Visualization version GIF version | ||
| Description: Exponentiation with a successor exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| onesuc | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ↑o suc 𝐵) = ((𝐴 ↑o 𝐵) ·o 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limom 7812 | . 2 ⊢ Lim ω | |
| 2 | frsuc 8356 | . . 3 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o) ↾ ω)‘𝐵))) | |
| 3 | peano2 7820 | . . . 4 ⊢ (𝐵 ∈ ω → suc 𝐵 ∈ ω) | |
| 4 | 3 | fvresd 6842 | . . 3 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o) ↾ ω)‘suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵)) |
| 5 | fvres 6841 | . . . 4 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o) ↾ ω)‘𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) | |
| 6 | 5 | fveq2d 6826 | . . 3 ⊢ (𝐵 ∈ ω → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o) ↾ ω)‘𝐵)) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))) |
| 7 | 2, 4, 6 | 3eqtr3d 2774 | . 2 ⊢ (𝐵 ∈ ω → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))) |
| 8 | 1, 7 | oesuclem 8440 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ↑o suc 𝐵) = ((𝐴 ↑o 𝐵) ·o 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5170 ↾ cres 5616 Oncon0 6306 suc csuc 6308 ‘cfv 6481 (class class class)co 7346 ωcom 7796 reccrdg 8328 1oc1o 8378 ·o comu 8383 ↑o coe 8384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-omul 8390 df-oexp 8391 |
| This theorem is referenced by: oe1 8459 nnesuc 8523 |
| Copyright terms: Public domain | W3C validator |