MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onesuc Structured version   Visualization version   GIF version

Theorem onesuc 8189
Description: Exponentiation with a successor exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
onesuc ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴o suc 𝐵) = ((𝐴o 𝐵) ·o 𝐴))

Proof of Theorem onesuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limom 7617 . 2 Lim ω
2 frsuc 8104 . . 3 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o) ↾ ω)‘𝐵)))
3 peano2 7624 . . . 4 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
43fvresd 6697 . . 3 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o) ↾ ω)‘suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵))
5 fvres 6696 . . . 4 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o) ↾ ω)‘𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
65fveq2d 6681 . . 3 (𝐵 ∈ ω → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o) ↾ ω)‘𝐵)) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
72, 4, 63eqtr3d 2782 . 2 (𝐵 ∈ ω → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
81, 7oesuclem 8184 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴o suc 𝐵) = ((𝐴o 𝐵) ·o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  Vcvv 3399  cmpt 5111  cres 5528  Oncon0 6173  suc csuc 6175  cfv 6340  (class class class)co 7173  ωcom 7602  reccrdg 8077  1oc1o 8127   ·o comu 8132  o coe 8133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pr 5297  ax-un 7482
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-omul 8139  df-oexp 8140
This theorem is referenced by:  oe1  8204  nnesuc  8268
  Copyright terms: Public domain W3C validator