Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onesuc | Structured version Visualization version GIF version |
Description: Exponentiation with a successor exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
onesuc | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ↑o suc 𝐵) = ((𝐴 ↑o 𝐵) ·o 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limom 7617 | . 2 ⊢ Lim ω | |
2 | frsuc 8104 | . . 3 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o) ↾ ω)‘𝐵))) | |
3 | peano2 7624 | . . . 4 ⊢ (𝐵 ∈ ω → suc 𝐵 ∈ ω) | |
4 | 3 | fvresd 6697 | . . 3 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o) ↾ ω)‘suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵)) |
5 | fvres 6696 | . . . 4 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o) ↾ ω)‘𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) | |
6 | 5 | fveq2d 6681 | . . 3 ⊢ (𝐵 ∈ ω → ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o) ↾ ω)‘𝐵)) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))) |
7 | 2, 4, 6 | 3eqtr3d 2782 | . 2 ⊢ (𝐵 ∈ ω → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))) |
8 | 1, 7 | oesuclem 8184 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ↑o suc 𝐵) = ((𝐴 ↑o 𝐵) ·o 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 Vcvv 3399 ↦ cmpt 5111 ↾ cres 5528 Oncon0 6173 suc csuc 6175 ‘cfv 6340 (class class class)co 7173 ωcom 7602 reccrdg 8077 1oc1o 8127 ·o comu 8132 ↑o coe 8133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pr 5297 ax-un 7482 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7176 df-oprab 7177 df-mpo 7178 df-om 7603 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-1o 8134 df-omul 8139 df-oexp 8140 |
This theorem is referenced by: oe1 8204 nnesuc 8268 |
Copyright terms: Public domain | W3C validator |