| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmconst | Structured version Visualization version GIF version | ||
| Description: A constant sequence converges to its value. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.) |
| Ref | Expression |
|---|---|
| lmconst.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| lmconst | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡‘𝐽)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝑃 ∈ 𝑋) | |
| 2 | simp3 1138 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 3 | uzid 12753 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 5 | lmconst.2 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | 4, 5 | eleqtrrdi 2842 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ 𝑍) |
| 7 | idd 24 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑃 ∈ 𝑢 → 𝑃 ∈ 𝑢)) | |
| 8 | 7 | ralrimdva 3132 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑃 ∈ 𝑢 → ∀𝑘 ∈ (ℤ≥‘𝑀)𝑃 ∈ 𝑢)) |
| 9 | fveq2 6828 | . . . . . 6 ⊢ (𝑗 = 𝑀 → (ℤ≥‘𝑗) = (ℤ≥‘𝑀)) | |
| 10 | 9 | raleqdv 3292 | . . . . 5 ⊢ (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢 ↔ ∀𝑘 ∈ (ℤ≥‘𝑀)𝑃 ∈ 𝑢)) |
| 11 | 10 | rspcev 3572 | . . . 4 ⊢ ((𝑀 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑀)𝑃 ∈ 𝑢) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢) |
| 12 | 6, 8, 11 | syl6an 684 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢)) |
| 13 | 12 | ralrimivw 3128 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢)) |
| 14 | simp1 1136 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝐽 ∈ (TopOn‘𝑋)) | |
| 15 | fconst6g 6718 | . . . 4 ⊢ (𝑃 ∈ 𝑋 → (𝑍 × {𝑃}):𝑍⟶𝑋) | |
| 16 | 1, 15 | syl 17 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝑃}):𝑍⟶𝑋) |
| 17 | fvconst2g 7142 | . . . 4 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑘 ∈ 𝑍) → ((𝑍 × {𝑃})‘𝑘) = 𝑃) | |
| 18 | 1, 17 | sylan 580 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ 𝑍) → ((𝑍 × {𝑃})‘𝑘) = 𝑃) |
| 19 | 14, 5, 2, 16, 18 | lmbrf 23181 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → ((𝑍 × {𝑃})(⇝𝑡‘𝐽)𝑃 ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢)))) |
| 20 | 1, 13, 19 | mpbir2and 713 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡‘𝐽)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {csn 4575 class class class wbr 5093 × cxp 5617 ⟶wf 6483 ‘cfv 6487 ℤcz 12474 ℤ≥cuz 12738 TopOnctopon 22831 ⇝𝑡clm 23147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-pre-lttri 11086 ax-pre-lttrn 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-neg 11353 df-z 12475 df-uz 12739 df-top 22815 df-topon 22832 df-lm 23150 |
| This theorem is referenced by: hlim0 31222 occllem 31290 nlelchi 32048 hmopidmchi 32138 esumcvg 34106 xlimconst 45928 |
| Copyright terms: Public domain | W3C validator |