| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmconst | Structured version Visualization version GIF version | ||
| Description: A constant sequence converges to its value. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.) |
| Ref | Expression |
|---|---|
| lmconst.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| lmconst | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡‘𝐽)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝑃 ∈ 𝑋) | |
| 2 | simp3 1138 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 3 | uzid 12814 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 5 | lmconst.2 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | 4, 5 | eleqtrrdi 2840 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ 𝑍) |
| 7 | idd 24 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑃 ∈ 𝑢 → 𝑃 ∈ 𝑢)) | |
| 8 | 7 | ralrimdva 3134 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑃 ∈ 𝑢 → ∀𝑘 ∈ (ℤ≥‘𝑀)𝑃 ∈ 𝑢)) |
| 9 | fveq2 6860 | . . . . . 6 ⊢ (𝑗 = 𝑀 → (ℤ≥‘𝑗) = (ℤ≥‘𝑀)) | |
| 10 | 9 | raleqdv 3301 | . . . . 5 ⊢ (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢 ↔ ∀𝑘 ∈ (ℤ≥‘𝑀)𝑃 ∈ 𝑢)) |
| 11 | 10 | rspcev 3591 | . . . 4 ⊢ ((𝑀 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑀)𝑃 ∈ 𝑢) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢) |
| 12 | 6, 8, 11 | syl6an 684 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢)) |
| 13 | 12 | ralrimivw 3130 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢)) |
| 14 | simp1 1136 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝐽 ∈ (TopOn‘𝑋)) | |
| 15 | fconst6g 6751 | . . . 4 ⊢ (𝑃 ∈ 𝑋 → (𝑍 × {𝑃}):𝑍⟶𝑋) | |
| 16 | 1, 15 | syl 17 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝑃}):𝑍⟶𝑋) |
| 17 | fvconst2g 7178 | . . . 4 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑘 ∈ 𝑍) → ((𝑍 × {𝑃})‘𝑘) = 𝑃) | |
| 18 | 1, 17 | sylan 580 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ 𝑍) → ((𝑍 × {𝑃})‘𝑘) = 𝑃) |
| 19 | 14, 5, 2, 16, 18 | lmbrf 23153 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → ((𝑍 × {𝑃})(⇝𝑡‘𝐽)𝑃 ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢)))) |
| 20 | 1, 13, 19 | mpbir2and 713 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡‘𝐽)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 {csn 4591 class class class wbr 5109 × cxp 5638 ⟶wf 6509 ‘cfv 6513 ℤcz 12535 ℤ≥cuz 12799 TopOnctopon 22803 ⇝𝑡clm 23119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-pre-lttri 11148 ax-pre-lttrn 11149 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-er 8673 df-pm 8804 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-neg 11414 df-z 12536 df-uz 12800 df-top 22787 df-topon 22804 df-lm 23122 |
| This theorem is referenced by: hlim0 31170 occllem 31238 nlelchi 31996 hmopidmchi 32086 esumcvg 34082 xlimconst 45816 |
| Copyright terms: Public domain | W3C validator |