| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmconst | Structured version Visualization version GIF version | ||
| Description: A constant sequence converges to its value. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.) |
| Ref | Expression |
|---|---|
| lmconst.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| lmconst | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡‘𝐽)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝑃 ∈ 𝑋) | |
| 2 | simp3 1138 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 3 | uzid 12808 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 5 | lmconst.2 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | 4, 5 | eleqtrrdi 2839 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ 𝑍) |
| 7 | idd 24 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑃 ∈ 𝑢 → 𝑃 ∈ 𝑢)) | |
| 8 | 7 | ralrimdva 3133 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑃 ∈ 𝑢 → ∀𝑘 ∈ (ℤ≥‘𝑀)𝑃 ∈ 𝑢)) |
| 9 | fveq2 6858 | . . . . . 6 ⊢ (𝑗 = 𝑀 → (ℤ≥‘𝑗) = (ℤ≥‘𝑀)) | |
| 10 | 9 | raleqdv 3299 | . . . . 5 ⊢ (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢 ↔ ∀𝑘 ∈ (ℤ≥‘𝑀)𝑃 ∈ 𝑢)) |
| 11 | 10 | rspcev 3588 | . . . 4 ⊢ ((𝑀 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑀)𝑃 ∈ 𝑢) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢) |
| 12 | 6, 8, 11 | syl6an 684 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢)) |
| 13 | 12 | ralrimivw 3129 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢)) |
| 14 | simp1 1136 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝐽 ∈ (TopOn‘𝑋)) | |
| 15 | fconst6g 6749 | . . . 4 ⊢ (𝑃 ∈ 𝑋 → (𝑍 × {𝑃}):𝑍⟶𝑋) | |
| 16 | 1, 15 | syl 17 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝑃}):𝑍⟶𝑋) |
| 17 | fvconst2g 7176 | . . . 4 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑘 ∈ 𝑍) → ((𝑍 × {𝑃})‘𝑘) = 𝑃) | |
| 18 | 1, 17 | sylan 580 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ 𝑍) → ((𝑍 × {𝑃})‘𝑘) = 𝑃) |
| 19 | 14, 5, 2, 16, 18 | lmbrf 23147 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → ((𝑍 × {𝑃})(⇝𝑡‘𝐽)𝑃 ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢)))) |
| 20 | 1, 13, 19 | mpbir2and 713 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡‘𝐽)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {csn 4589 class class class wbr 5107 × cxp 5636 ⟶wf 6507 ‘cfv 6511 ℤcz 12529 ℤ≥cuz 12793 TopOnctopon 22797 ⇝𝑡clm 23113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-neg 11408 df-z 12530 df-uz 12794 df-top 22781 df-topon 22798 df-lm 23116 |
| This theorem is referenced by: hlim0 31164 occllem 31232 nlelchi 31990 hmopidmchi 32080 esumcvg 34076 xlimconst 45823 |
| Copyright terms: Public domain | W3C validator |