MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmconst Structured version   Visualization version   GIF version

Theorem lmconst 21588
Description: A constant sequence converges to its value. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
Hypothesis
Ref Expression
lmconst.2 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
lmconst ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡𝐽)𝑃)

Proof of Theorem lmconst
Dummy variables 𝑗 𝑘 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1118 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → 𝑃𝑋)
2 simp3 1119 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
3 uzid 12071 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
42, 3syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → 𝑀 ∈ (ℤ𝑀))
5 lmconst.2 . . . . 5 𝑍 = (ℤ𝑀)
64, 5syl6eleqr 2870 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → 𝑀𝑍)
7 idd 24 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑃𝑢𝑃𝑢))
87ralrimdva 3132 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → (𝑃𝑢 → ∀𝑘 ∈ (ℤ𝑀)𝑃𝑢))
9 fveq2 6496 . . . . . 6 (𝑗 = 𝑀 → (ℤ𝑗) = (ℤ𝑀))
109raleqdv 3348 . . . . 5 (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ𝑗)𝑃𝑢 ↔ ∀𝑘 ∈ (ℤ𝑀)𝑃𝑢))
1110rspcev 3528 . . . 4 ((𝑀𝑍 ∧ ∀𝑘 ∈ (ℤ𝑀)𝑃𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑃𝑢)
126, 8, 11syl6an 672 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑃𝑢))
1312ralrimivw 3126 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑃𝑢))
14 simp1 1117 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → 𝐽 ∈ (TopOn‘𝑋))
15 fconst6g 6394 . . . 4 (𝑃𝑋 → (𝑍 × {𝑃}):𝑍𝑋)
161, 15syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → (𝑍 × {𝑃}):𝑍𝑋)
17 fvconst2g 6789 . . . 4 ((𝑃𝑋𝑘𝑍) → ((𝑍 × {𝑃})‘𝑘) = 𝑃)
181, 17sylan 572 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) ∧ 𝑘𝑍) → ((𝑍 × {𝑃})‘𝑘) = 𝑃)
1914, 5, 2, 16, 18lmbrf 21587 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → ((𝑍 × {𝑃})(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑃𝑢))))
201, 13, 19mpbir2and 701 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡𝐽)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051  wral 3081  wrex 3082  {csn 4435   class class class wbr 4925   × cxp 5401  wf 6181  cfv 6185  cz 11791  cuz 12056  TopOnctopon 21237  𝑡clm 21553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-pre-lttri 10407  ax-pre-lttrn 10408
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-po 5322  df-so 5323  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-1st 7499  df-2nd 7500  df-er 8087  df-pm 8207  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-neg 10671  df-z 11792  df-uz 12057  df-top 21221  df-topon 21238  df-lm 21556
This theorem is referenced by:  hlim0  28806  occllem  28876  nlelchi  29634  hmopidmchi  29724  esumcvg  31021  xlimconst  41571
  Copyright terms: Public domain W3C validator