| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmconst | Structured version Visualization version GIF version | ||
| Description: A constant sequence converges to its value. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.) |
| Ref | Expression |
|---|---|
| lmconst.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| lmconst | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡‘𝐽)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝑃 ∈ 𝑋) | |
| 2 | simp3 1138 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 3 | uzid 12739 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 5 | lmconst.2 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | 4, 5 | eleqtrrdi 2840 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ 𝑍) |
| 7 | idd 24 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑃 ∈ 𝑢 → 𝑃 ∈ 𝑢)) | |
| 8 | 7 | ralrimdva 3130 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑃 ∈ 𝑢 → ∀𝑘 ∈ (ℤ≥‘𝑀)𝑃 ∈ 𝑢)) |
| 9 | fveq2 6817 | . . . . . 6 ⊢ (𝑗 = 𝑀 → (ℤ≥‘𝑗) = (ℤ≥‘𝑀)) | |
| 10 | 9 | raleqdv 3290 | . . . . 5 ⊢ (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢 ↔ ∀𝑘 ∈ (ℤ≥‘𝑀)𝑃 ∈ 𝑢)) |
| 11 | 10 | rspcev 3575 | . . . 4 ⊢ ((𝑀 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑀)𝑃 ∈ 𝑢) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢) |
| 12 | 6, 8, 11 | syl6an 684 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢)) |
| 13 | 12 | ralrimivw 3126 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢)) |
| 14 | simp1 1136 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → 𝐽 ∈ (TopOn‘𝑋)) | |
| 15 | fconst6g 6708 | . . . 4 ⊢ (𝑃 ∈ 𝑋 → (𝑍 × {𝑃}):𝑍⟶𝑋) | |
| 16 | 1, 15 | syl 17 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝑃}):𝑍⟶𝑋) |
| 17 | fvconst2g 7131 | . . . 4 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑘 ∈ 𝑍) → ((𝑍 × {𝑃})‘𝑘) = 𝑃) | |
| 18 | 1, 17 | sylan 580 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ 𝑍) → ((𝑍 × {𝑃})‘𝑘) = 𝑃) |
| 19 | 14, 5, 2, 16, 18 | lmbrf 23168 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → ((𝑍 × {𝑃})(⇝𝑡‘𝐽)𝑃 ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑃 ∈ 𝑢)))) |
| 20 | 1, 13, 19 | mpbir2and 713 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡‘𝐽)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ∀wral 3045 ∃wrex 3054 {csn 4574 class class class wbr 5089 × cxp 5612 ⟶wf 6473 ‘cfv 6477 ℤcz 12460 ℤ≥cuz 12724 TopOnctopon 22818 ⇝𝑡clm 23134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-pre-lttri 11072 ax-pre-lttrn 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-er 8617 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-neg 11339 df-z 12461 df-uz 12725 df-top 22802 df-topon 22819 df-lm 23137 |
| This theorem is referenced by: hlim0 31205 occllem 31273 nlelchi 32031 hmopidmchi 32121 esumcvg 34089 xlimconst 45842 |
| Copyright terms: Public domain | W3C validator |