MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmconst Structured version   Visualization version   GIF version

Theorem lmconst 23148
Description: A constant sequence converges to its value. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
Hypothesis
Ref Expression
lmconst.2 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
lmconst ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡𝐽)𝑃)

Proof of Theorem lmconst
Dummy variables 𝑗 𝑘 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → 𝑃𝑋)
2 simp3 1138 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
3 uzid 12808 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
42, 3syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → 𝑀 ∈ (ℤ𝑀))
5 lmconst.2 . . . . 5 𝑍 = (ℤ𝑀)
64, 5eleqtrrdi 2839 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → 𝑀𝑍)
7 idd 24 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑃𝑢𝑃𝑢))
87ralrimdva 3133 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → (𝑃𝑢 → ∀𝑘 ∈ (ℤ𝑀)𝑃𝑢))
9 fveq2 6858 . . . . . 6 (𝑗 = 𝑀 → (ℤ𝑗) = (ℤ𝑀))
109raleqdv 3299 . . . . 5 (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ𝑗)𝑃𝑢 ↔ ∀𝑘 ∈ (ℤ𝑀)𝑃𝑢))
1110rspcev 3588 . . . 4 ((𝑀𝑍 ∧ ∀𝑘 ∈ (ℤ𝑀)𝑃𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑃𝑢)
126, 8, 11syl6an 684 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑃𝑢))
1312ralrimivw 3129 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑃𝑢))
14 simp1 1136 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → 𝐽 ∈ (TopOn‘𝑋))
15 fconst6g 6749 . . . 4 (𝑃𝑋 → (𝑍 × {𝑃}):𝑍𝑋)
161, 15syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → (𝑍 × {𝑃}):𝑍𝑋)
17 fvconst2g 7176 . . . 4 ((𝑃𝑋𝑘𝑍) → ((𝑍 × {𝑃})‘𝑘) = 𝑃)
181, 17sylan 580 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) ∧ 𝑘𝑍) → ((𝑍 × {𝑃})‘𝑘) = 𝑃)
1914, 5, 2, 16, 18lmbrf 23147 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → ((𝑍 × {𝑃})(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑃𝑢))))
201, 13, 19mpbir2and 713 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡𝐽)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {csn 4589   class class class wbr 5107   × cxp 5636  wf 6507  cfv 6511  cz 12529  cuz 12793  TopOnctopon 22797  𝑡clm 23113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-neg 11408  df-z 12530  df-uz 12794  df-top 22781  df-topon 22798  df-lm 23116
This theorem is referenced by:  hlim0  31164  occllem  31232  nlelchi  31990  hmopidmchi  32080  esumcvg  34076  xlimconst  45823
  Copyright terms: Public domain W3C validator