|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > lt2msq | Structured version Visualization version GIF version | ||
| Description: Two nonnegative numbers compare the same as their squares. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.) | 
| Ref | Expression | 
|---|---|
| lt2msq | ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐴) < (𝐵 · 𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lt2msq1 12152 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴 · 𝐴) < (𝐵 · 𝐵)) | |
| 2 | 1 | 3expia 1122 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 · 𝐴) < (𝐵 · 𝐵))) | 
| 3 | 2 | adantrr 717 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 → (𝐴 · 𝐴) < (𝐵 · 𝐵))) | 
| 4 | id 22 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 5 | 4, 4 | oveq12d 7449 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 · 𝐴) = (𝐵 · 𝐵)) | 
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 = 𝐵 → (𝐴 · 𝐴) = (𝐵 · 𝐵))) | 
| 7 | lt2msq1 12152 | . . . . . . . 8 ⊢ (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴) → (𝐵 · 𝐵) < (𝐴 · 𝐴)) | |
| 8 | 7 | 3expia 1122 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → (𝐵 · 𝐵) < (𝐴 · 𝐴))) | 
| 9 | 8 | adantrr 717 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐵 < 𝐴 → (𝐵 · 𝐵) < (𝐴 · 𝐴))) | 
| 10 | 9 | ancoms 458 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 < 𝐴 → (𝐵 · 𝐵) < (𝐴 · 𝐴))) | 
| 11 | 6, 10 | orim12d 967 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → ((𝐴 · 𝐴) = (𝐵 · 𝐵) ∨ (𝐵 · 𝐵) < (𝐴 · 𝐴)))) | 
| 12 | 11 | con3d 152 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (¬ ((𝐴 · 𝐴) = (𝐵 · 𝐵) ∨ (𝐵 · 𝐵) < (𝐴 · 𝐴)) → ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | 
| 13 | simpll 767 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ) | |
| 14 | 13, 13 | remulcld 11291 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐴) ∈ ℝ) | 
| 15 | simprl 771 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ) | |
| 16 | 15, 15 | remulcld 11291 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 · 𝐵) ∈ ℝ) | 
| 17 | 14, 16 | lttrid 11399 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) < (𝐵 · 𝐵) ↔ ¬ ((𝐴 · 𝐴) = (𝐵 · 𝐵) ∨ (𝐵 · 𝐵) < (𝐴 · 𝐴)))) | 
| 18 | 13, 15 | lttrid 11399 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | 
| 19 | 12, 17, 18 | 3imtr4d 294 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) < (𝐵 · 𝐵) → 𝐴 < 𝐵)) | 
| 20 | 3, 19 | impbid 212 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐴) < (𝐵 · 𝐵))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 (class class class)co 7431 ℝcr 11154 0cc0 11155 · cmul 11160 < clt 11295 ≤ cle 11296 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 | 
| This theorem is referenced by: le2msq 12168 lt2msqi 12180 lt2sq 14173 | 
| Copyright terms: Public domain | W3C validator |