MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lt2msq1 Structured version   Visualization version   GIF version

Theorem lt2msq1 12099
Description: Lemma for lt2msq 12100. (Contributed by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
lt2msq1 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง ๐ต โˆˆ โ„ โˆง ๐ด < ๐ต) โ†’ (๐ด ยท ๐ด) < (๐ต ยท ๐ต))

Proof of Theorem lt2msq1
StepHypRef Expression
1 simp1l 1194 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง ๐ต โˆˆ โ„ โˆง ๐ด < ๐ต) โ†’ ๐ด โˆˆ โ„)
21, 1remulcld 11245 . 2 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง ๐ต โˆˆ โ„ โˆง ๐ด < ๐ต) โ†’ (๐ด ยท ๐ด) โˆˆ โ„)
3 simp2 1134 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง ๐ต โˆˆ โ„ โˆง ๐ด < ๐ต) โ†’ ๐ต โˆˆ โ„)
43, 1remulcld 11245 . 2 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง ๐ต โˆˆ โ„ โˆง ๐ด < ๐ต) โ†’ (๐ต ยท ๐ด) โˆˆ โ„)
53, 3remulcld 11245 . 2 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง ๐ต โˆˆ โ„ โˆง ๐ด < ๐ต) โ†’ (๐ต ยท ๐ต) โˆˆ โ„)
6 simp1 1133 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง ๐ต โˆˆ โ„ โˆง ๐ด < ๐ต) โ†’ (๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด))
7 simp3 1135 . . . 4 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง ๐ต โˆˆ โ„ โˆง ๐ด < ๐ต) โ†’ ๐ด < ๐ต)
81, 3, 7ltled 11363 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง ๐ต โˆˆ โ„ โˆง ๐ด < ๐ต) โ†’ ๐ด โ‰ค ๐ต)
9 lemul1a 12069 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด)) โˆง ๐ด โ‰ค ๐ต) โ†’ (๐ด ยท ๐ด) โ‰ค (๐ต ยท ๐ด))
101, 3, 6, 8, 9syl31anc 1370 . 2 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง ๐ต โˆˆ โ„ โˆง ๐ด < ๐ต) โ†’ (๐ด ยท ๐ด) โ‰ค (๐ต ยท ๐ด))
11 0red 11218 . . . . 5 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง ๐ต โˆˆ โ„ โˆง ๐ด < ๐ต) โ†’ 0 โˆˆ โ„)
12 simp1r 1195 . . . . 5 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง ๐ต โˆˆ โ„ โˆง ๐ด < ๐ต) โ†’ 0 โ‰ค ๐ด)
1311, 1, 3, 12, 7lelttrd 11373 . . . 4 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง ๐ต โˆˆ โ„ โˆง ๐ด < ๐ต) โ†’ 0 < ๐ต)
14 ltmul2 12066 . . . 4 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ต โˆˆ โ„ โˆง 0 < ๐ต)) โ†’ (๐ด < ๐ต โ†” (๐ต ยท ๐ด) < (๐ต ยท ๐ต)))
151, 3, 3, 13, 14syl112anc 1371 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง ๐ต โˆˆ โ„ โˆง ๐ด < ๐ต) โ†’ (๐ด < ๐ต โ†” (๐ต ยท ๐ด) < (๐ต ยท ๐ต)))
167, 15mpbid 231 . 2 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง ๐ต โˆˆ โ„ โˆง ๐ด < ๐ต) โ†’ (๐ต ยท ๐ด) < (๐ต ยท ๐ต))
172, 4, 5, 10, 16lelttrd 11373 1 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง ๐ต โˆˆ โ„ โˆง ๐ด < ๐ต) โ†’ (๐ด ยท ๐ด) < (๐ต ยท ๐ต))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   โˆง w3a 1084   โˆˆ wcel 2098   class class class wbr 5141  (class class class)co 7404  โ„cr 11108  0cc0 11109   ยท cmul 11114   < clt 11249   โ‰ค cle 11250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448
This theorem is referenced by:  lt2msq  12100
  Copyright terms: Public domain W3C validator