Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg8b Structured version   Visualization version   GIF version

Theorem cdlemg8b 36702
Description: TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013.)
Hypotheses
Ref Expression
cdlemg8.l = (le‘𝐾)
cdlemg8.j = (join‘𝐾)
cdlemg8.m = (meet‘𝐾)
cdlemg8.a 𝐴 = (Atoms‘𝐾)
cdlemg8.h 𝐻 = (LHyp‘𝐾)
cdlemg8.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg8b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝑃 (𝐹‘(𝐺𝑃))) = (𝑃 𝑄))

Proof of Theorem cdlemg8b
StepHypRef Expression
1 simp1l 1258 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝐾 ∈ HL)
21hllatd 35438 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝐾 ∈ Lat)
3 simp21l 1393 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝑃𝐴)
4 eqid 2825 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
5 cdlemg8.a . . . . . 6 𝐴 = (Atoms‘𝐾)
64, 5atbase 35363 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
73, 6syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝑃 ∈ (Base‘𝐾))
8 simp22l 1395 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝑄𝐴)
94, 5atbase 35363 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
108, 9syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝑄 ∈ (Base‘𝐾))
11 cdlemg8.l . . . . 5 = (le‘𝐾)
12 cdlemg8.j . . . . 5 = (join‘𝐾)
134, 11, 12latlej1 17420 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑃 (𝑃 𝑄))
142, 7, 10, 13syl3anc 1494 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝑃 (𝑃 𝑄))
15 simp1 1170 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 simp23 1269 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝐹𝑇)
17 simp31 1270 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝐺𝑇)
18 simp21 1267 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
19 cdlemg8.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
20 cdlemg8.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
2111, 5, 19, 20ltrnel 36213 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
2215, 17, 18, 21syl3anc 1494 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
2311, 5, 19, 20ltrnel 36213 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊)) → ((𝐹‘(𝐺𝑃)) ∈ 𝐴 ∧ ¬ (𝐹‘(𝐺𝑃)) 𝑊))
2423simpld 490 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊)) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
2515, 16, 22, 24syl3anc 1494 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
264, 5atbase 35363 . . . . . 6 ((𝐹‘(𝐺𝑃)) ∈ 𝐴 → (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))
2725, 26syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾))
284, 19, 20ltrncl 36199 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑄 ∈ (Base‘𝐾)) → (𝐺𝑄) ∈ (Base‘𝐾))
2915, 17, 10, 28syl3anc 1494 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝐺𝑄) ∈ (Base‘𝐾))
304, 19, 20ltrncl 36199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐺𝑄) ∈ (Base‘𝐾)) → (𝐹‘(𝐺𝑄)) ∈ (Base‘𝐾))
3115, 16, 29, 30syl3anc 1494 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝐹‘(𝐺𝑄)) ∈ (Base‘𝐾))
324, 11, 12latlej1 17420 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑄)) ∈ (Base‘𝐾)) → (𝐹‘(𝐺𝑃)) ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))))
332, 27, 31, 32syl3anc 1494 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝐹‘(𝐺𝑃)) ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))))
34 simp32 1271 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄))
3533, 34breqtrd 4901 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝐹‘(𝐺𝑃)) (𝑃 𝑄))
364, 12, 5hlatjcl 35441 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
371, 3, 8, 36syl3anc 1494 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝑃 𝑄) ∈ (Base‘𝐾))
384, 11, 12latjle12 17422 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝐹‘(𝐺𝑃)) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) (𝑃 𝑄)) ↔ (𝑃 (𝐹‘(𝐺𝑃))) (𝑃 𝑄)))
392, 7, 27, 37, 38syl13anc 1495 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → ((𝑃 (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) (𝑃 𝑄)) ↔ (𝑃 (𝐹‘(𝐺𝑃))) (𝑃 𝑄)))
4014, 35, 39mpbi2and 703 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝑃 (𝐹‘(𝐺𝑃))) (𝑃 𝑄))
41 simp33 1272 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝐹‘(𝐺𝑃)) ≠ 𝑃)
4241necomd 3054 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → 𝑃 ≠ (𝐹‘(𝐺𝑃)))
4311, 12, 5ps-1 35551 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝐹‘(𝐺𝑃)) ∈ 𝐴𝑃 ≠ (𝐹‘(𝐺𝑃))) ∧ (𝑃𝐴𝑄𝐴)) → ((𝑃 (𝐹‘(𝐺𝑃))) (𝑃 𝑄) ↔ (𝑃 (𝐹‘(𝐺𝑃))) = (𝑃 𝑄)))
441, 3, 25, 42, 3, 8, 43syl132anc 1511 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → ((𝑃 (𝐹‘(𝐺𝑃))) (𝑃 𝑄) ↔ (𝑃 (𝐹‘(𝐺𝑃))) = (𝑃 𝑄)))
4540, 44mpbid 224 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = (𝑃 𝑄) ∧ (𝐹‘(𝐺𝑃)) ≠ 𝑃)) → (𝑃 (𝐹‘(𝐺𝑃))) = (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wne 2999   class class class wbr 4875  cfv 6127  (class class class)co 6910  Basecbs 16229  lecple 16319  joincjn 17304  meetcmee 17305  Latclat 17405  Atomscatm 35337  HLchlt 35424  LHypclh 36058  LTrncltrn 36175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-map 8129  df-proset 17288  df-poset 17306  df-plt 17318  df-lub 17334  df-glb 17335  df-join 17336  df-meet 17337  df-p0 17399  df-lat 17406  df-oposet 35250  df-ol 35252  df-oml 35253  df-covers 35340  df-ats 35341  df-atl 35372  df-cvlat 35396  df-hlat 35425  df-lhyp 36062  df-laut 36063  df-ldil 36178  df-ltrn 36179
This theorem is referenced by:  cdlemg8c  36703  cdlemg8d  36704
  Copyright terms: Public domain W3C validator