Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkvcl Structured version   Visualization version   GIF version

Theorem cdlemkvcl 36647
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 27-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b 𝐵 = (Base‘𝐾)
cdlemk.l = (le‘𝐾)
cdlemk.j = (join‘𝐾)
cdlemk.a 𝐴 = (Atoms‘𝐾)
cdlemk.h 𝐻 = (LHyp‘𝐾)
cdlemk.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk.m = (meet‘𝐾)
cdlemk.v1 𝑉 = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹))))
Assertion
Ref Expression
cdlemkvcl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → 𝑉𝐵)

Proof of Theorem cdlemkvcl
StepHypRef Expression
1 cdlemk.v1 . 2 𝑉 = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹))))
2 simp1l 1239 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → 𝐾 ∈ HL)
3 hllat 35168 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
42, 3syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → 𝐾 ∈ Lat)
5 simp1 1130 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simp22 1249 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → 𝐺𝑇)
7 cdlemk.b . . . . . . 7 𝐵 = (Base‘𝐾)
8 cdlemk.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
97, 8atbase 35094 . . . . . 6 (𝑃𝐴𝑃𝐵)
1093ad2ant3 1129 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → 𝑃𝐵)
11 cdlemk.h . . . . . 6 𝐻 = (LHyp‘𝐾)
12 cdlemk.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
137, 11, 12ltrncl 35929 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐵) → (𝐺𝑃) ∈ 𝐵)
145, 6, 10, 13syl3anc 1476 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → (𝐺𝑃) ∈ 𝐵)
15 simp23 1250 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → 𝑋𝑇)
167, 11, 12ltrncl 35929 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇𝑃𝐵) → (𝑋𝑃) ∈ 𝐵)
175, 15, 10, 16syl3anc 1476 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → (𝑋𝑃) ∈ 𝐵)
18 cdlemk.j . . . . 5 = (join‘𝐾)
197, 18latjcl 17258 . . . 4 ((𝐾 ∈ Lat ∧ (𝐺𝑃) ∈ 𝐵 ∧ (𝑋𝑃) ∈ 𝐵) → ((𝐺𝑃) (𝑋𝑃)) ∈ 𝐵)
204, 14, 17, 19syl3anc 1476 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → ((𝐺𝑃) (𝑋𝑃)) ∈ 𝐵)
21 simp21 1248 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → 𝐹𝑇)
2211, 12ltrncnv 35950 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
235, 21, 22syl2anc 565 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → 𝐹𝑇)
2411, 12ltrnco 36524 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
255, 6, 23, 24syl3anc 1476 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → (𝐺𝐹) ∈ 𝑇)
26 cdlemk.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
277, 11, 12, 26trlcl 35969 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇) → (𝑅‘(𝐺𝐹)) ∈ 𝐵)
285, 25, 27syl2anc 565 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → (𝑅‘(𝐺𝐹)) ∈ 𝐵)
2911, 12ltrnco 36524 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇𝐹𝑇) → (𝑋𝐹) ∈ 𝑇)
305, 15, 23, 29syl3anc 1476 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → (𝑋𝐹) ∈ 𝑇)
317, 11, 12, 26trlcl 35969 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐹) ∈ 𝑇) → (𝑅‘(𝑋𝐹)) ∈ 𝐵)
325, 30, 31syl2anc 565 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → (𝑅‘(𝑋𝐹)) ∈ 𝐵)
337, 18latjcl 17258 . . . 4 ((𝐾 ∈ Lat ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐵 ∧ (𝑅‘(𝑋𝐹)) ∈ 𝐵) → ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹))) ∈ 𝐵)
344, 28, 32, 33syl3anc 1476 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹))) ∈ 𝐵)
35 cdlemk.m . . . 4 = (meet‘𝐾)
367, 35latmcl 17259 . . 3 ((𝐾 ∈ Lat ∧ ((𝐺𝑃) (𝑋𝑃)) ∈ 𝐵 ∧ ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹))) ∈ 𝐵) → (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹)))) ∈ 𝐵)
374, 20, 34, 36syl3anc 1476 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹)))) ∈ 𝐵)
381, 37syl5eqel 2854 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → 𝑉𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  ccnv 5248  ccom 5253  cfv 6031  (class class class)co 6792  Basecbs 16063  lecple 16155  joincjn 17151  meetcmee 17152  Latclat 17252  Atomscatm 35068  HLchlt 35155  LHypclh 35788  LTrncltrn 35905  trLctrl 35963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7095  ax-riotaBAD 34757
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-undef 7550  df-map 8010  df-preset 17135  df-poset 17153  df-plt 17165  df-lub 17181  df-glb 17182  df-join 17183  df-meet 17184  df-p0 17246  df-p1 17247  df-lat 17253  df-clat 17315  df-oposet 34981  df-ol 34983  df-oml 34984  df-covers 35071  df-ats 35072  df-atl 35103  df-cvlat 35127  df-hlat 35156  df-llines 35302  df-lplanes 35303  df-lvols 35304  df-lines 35305  df-psubsp 35307  df-pmap 35308  df-padd 35600  df-lhyp 35792  df-laut 35793  df-ldil 35908  df-ltrn 35909  df-trl 35964
This theorem is referenced by:  cdlemk7  36653  cdlemk11  36654  cdlemk7u  36675  cdlemk11u  36676
  Copyright terms: Public domain W3C validator