Proof of Theorem cdlemg17f
| Step | Hyp | Ref
| Expression |
| 1 | | cdlemg12.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
| 2 | | cdlemg12.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
| 3 | | cdlemg12.m |
. . 3
⊢ ∧ =
(meet‘𝐾) |
| 4 | | cdlemg12.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
| 5 | | cdlemg12.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
| 6 | | cdlemg12.t |
. . 3
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 7 | | cdlemg12b.r |
. . 3
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | cdlemg17e 40626 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑃) ∨ (𝑅‘𝐺))) |
| 9 | | simp11 1203 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 10 | | simp22 1207 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝐺 ∈ 𝑇) |
| 11 | | simp21 1206 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝐹 ∈ 𝑇) |
| 12 | | simp12 1204 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 13 | 1, 4, 5, 6 | ltrnel 40100 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
| 14 | 9, 11, 12, 13 | syl3anc 1372 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
| 15 | 1, 2, 3, 4, 5, 6, 7 | trlval2 40124 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) → (𝑅‘𝐺) = (((𝐹‘𝑃) ∨ (𝐺‘(𝐹‘𝑃))) ∧ 𝑊)) |
| 16 | 9, 10, 14, 15 | syl3anc 1372 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝑅‘𝐺) = (((𝐹‘𝑃) ∨ (𝐺‘(𝐹‘𝑃))) ∧ 𝑊)) |
| 17 | 16 | oveq2d 7429 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝐹‘𝑃) ∨ (𝑅‘𝐺)) = ((𝐹‘𝑃) ∨ (((𝐹‘𝑃) ∨ (𝐺‘(𝐹‘𝑃))) ∧ 𝑊))) |
| 18 | | simp12l 1286 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑃 ∈ 𝐴) |
| 19 | 1, 4, 5, 6 | ltrncoat 40105 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → (𝐺‘(𝐹‘𝑃)) ∈ 𝐴) |
| 20 | 9, 10, 11, 18, 19 | syl121anc 1376 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐺‘(𝐹‘𝑃)) ∈ 𝐴) |
| 21 | | eqid 2734 |
. . . 4
⊢ (((𝐹‘𝑃) ∨ (𝐺‘(𝐹‘𝑃))) ∧ 𝑊) = (((𝐹‘𝑃) ∨ (𝐺‘(𝐹‘𝑃))) ∧ 𝑊) |
| 22 | 1, 2, 3, 4, 5, 21 | cdleme0cp 40175 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊) ∧ (𝐺‘(𝐹‘𝑃)) ∈ 𝐴)) → ((𝐹‘𝑃) ∨ (((𝐹‘𝑃) ∨ (𝐺‘(𝐹‘𝑃))) ∧ 𝑊)) = ((𝐹‘𝑃) ∨ (𝐺‘(𝐹‘𝑃)))) |
| 23 | 9, 14, 20, 22 | syl12anc 836 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝐹‘𝑃) ∨ (((𝐹‘𝑃) ∨ (𝐺‘(𝐹‘𝑃))) ∧ 𝑊)) = ((𝐹‘𝑃) ∨ (𝐺‘(𝐹‘𝑃)))) |
| 24 | 8, 17, 23 | 3eqtrd 2773 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑃) ∨ (𝐺‘(𝐹‘𝑃)))) |