Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg17f Structured version   Visualization version   GIF version

Theorem cdlemg17f 40179
Description: TODO: fix comment. (Contributed by NM, 8-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l ≀ = (leβ€˜πΎ)
cdlemg12.j ∨ = (joinβ€˜πΎ)
cdlemg12.m ∧ = (meetβ€˜πΎ)
cdlemg12.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg12.h 𝐻 = (LHypβ€˜πΎ)
cdlemg12.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemg12b.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemg17f ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) = ((πΉβ€˜π‘ƒ) ∨ (πΊβ€˜(πΉβ€˜π‘ƒ))))
Distinct variable groups:   𝐴,π‘Ÿ   𝐺,π‘Ÿ   ∨ ,π‘Ÿ   ≀ ,π‘Ÿ   𝑃,π‘Ÿ   𝑄,π‘Ÿ   π‘Š,π‘Ÿ
Allowed substitution hints:   𝑅(π‘Ÿ)   𝑇(π‘Ÿ)   𝐹(π‘Ÿ)   𝐻(π‘Ÿ)   𝐾(π‘Ÿ)   ∧ (π‘Ÿ)

Proof of Theorem cdlemg17f
StepHypRef Expression
1 cdlemg12.l . . 3 ≀ = (leβ€˜πΎ)
2 cdlemg12.j . . 3 ∨ = (joinβ€˜πΎ)
3 cdlemg12.m . . 3 ∧ = (meetβ€˜πΎ)
4 cdlemg12.a . . 3 𝐴 = (Atomsβ€˜πΎ)
5 cdlemg12.h . . 3 𝐻 = (LHypβ€˜πΎ)
6 cdlemg12.t . . 3 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
7 cdlemg12b.r . . 3 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
81, 2, 3, 4, 5, 6, 7cdlemg17e 40178 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) = ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜πΊ)))
9 simp11 1200 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
10 simp22 1204 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐺 ∈ 𝑇)
11 simp21 1203 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐹 ∈ 𝑇)
12 simp12 1201 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
131, 4, 5, 6ltrnel 39652 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š))
149, 11, 12, 13syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š))
151, 2, 3, 4, 5, 6, 7trlval2 39676 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š)) β†’ (π‘…β€˜πΊ) = (((πΉβ€˜π‘ƒ) ∨ (πΊβ€˜(πΉβ€˜π‘ƒ))) ∧ π‘Š))
169, 10, 14, 15syl3anc 1368 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (π‘…β€˜πΊ) = (((πΉβ€˜π‘ƒ) ∨ (πΊβ€˜(πΉβ€˜π‘ƒ))) ∧ π‘Š))
1716oveq2d 7442 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜πΊ)) = ((πΉβ€˜π‘ƒ) ∨ (((πΉβ€˜π‘ƒ) ∨ (πΊβ€˜(πΉβ€˜π‘ƒ))) ∧ π‘Š)))
18 simp12l 1283 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑃 ∈ 𝐴)
191, 4, 5, 6ltrncoat 39657 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) β†’ (πΊβ€˜(πΉβ€˜π‘ƒ)) ∈ 𝐴)
209, 10, 11, 18, 19syl121anc 1372 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (πΊβ€˜(πΉβ€˜π‘ƒ)) ∈ 𝐴)
21 eqid 2728 . . . 4 (((πΉβ€˜π‘ƒ) ∨ (πΊβ€˜(πΉβ€˜π‘ƒ))) ∧ π‘Š) = (((πΉβ€˜π‘ƒ) ∨ (πΊβ€˜(πΉβ€˜π‘ƒ))) ∧ π‘Š)
221, 2, 3, 4, 5, 21cdleme0cp 39727 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š) ∧ (πΊβ€˜(πΉβ€˜π‘ƒ)) ∈ 𝐴)) β†’ ((πΉβ€˜π‘ƒ) ∨ (((πΉβ€˜π‘ƒ) ∨ (πΊβ€˜(πΉβ€˜π‘ƒ))) ∧ π‘Š)) = ((πΉβ€˜π‘ƒ) ∨ (πΊβ€˜(πΉβ€˜π‘ƒ))))
239, 14, 20, 22syl12anc 835 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((πΉβ€˜π‘ƒ) ∨ (((πΉβ€˜π‘ƒ) ∨ (πΊβ€˜(πΉβ€˜π‘ƒ))) ∧ π‘Š)) = ((πΉβ€˜π‘ƒ) ∨ (πΊβ€˜(πΉβ€˜π‘ƒ))))
248, 17, 233eqtrd 2772 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) = ((πΉβ€˜π‘ƒ) ∨ (πΊβ€˜(πΉβ€˜π‘ƒ))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2937  βˆƒwrex 3067   class class class wbr 5152  β€˜cfv 6553  (class class class)co 7426  lecple 17249  joincjn 18312  meetcmee 18313  Atomscatm 38775  HLchlt 38862  LHypclh 39497  LTrncltrn 39614  trLctrl 39671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-riotaBAD 38465
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 8001  df-2nd 8002  df-undef 8287  df-map 8855  df-proset 18296  df-poset 18314  df-plt 18331  df-lub 18347  df-glb 18348  df-join 18349  df-meet 18350  df-p0 18426  df-p1 18427  df-lat 18433  df-clat 18500  df-oposet 38688  df-ol 38690  df-oml 38691  df-covers 38778  df-ats 38779  df-atl 38810  df-cvlat 38834  df-hlat 38863  df-llines 39011  df-lplanes 39012  df-lvols 39013  df-lines 39014  df-psubsp 39016  df-pmap 39017  df-padd 39309  df-lhyp 39501  df-laut 39502  df-ldil 39617  df-ltrn 39618  df-trl 39672
This theorem is referenced by:  cdlemg17g  40180
  Copyright terms: Public domain W3C validator