Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg17f Structured version   Visualization version   GIF version

Theorem cdlemg17f 40788
Description: TODO: fix comment. (Contributed by NM, 8-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg17f ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑃) (𝐺‘(𝐹𝑃))))
Distinct variable groups:   𝐴,𝑟   𝐺,𝑟   ,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑊,𝑟
Allowed substitution hints:   𝑅(𝑟)   𝑇(𝑟)   𝐹(𝑟)   𝐻(𝑟)   𝐾(𝑟)   (𝑟)

Proof of Theorem cdlemg17f
StepHypRef Expression
1 cdlemg12.l . . 3 = (le‘𝐾)
2 cdlemg12.j . . 3 = (join‘𝐾)
3 cdlemg12.m . . 3 = (meet‘𝐾)
4 cdlemg12.a . . 3 𝐴 = (Atoms‘𝐾)
5 cdlemg12.h . . 3 𝐻 = (LHyp‘𝐾)
6 cdlemg12.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
7 cdlemg12b.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7cdlemg17e 40787 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑃) (𝑅𝐺)))
9 simp11 1204 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 simp22 1208 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐺𝑇)
11 simp21 1207 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐹𝑇)
12 simp12 1205 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
131, 4, 5, 6ltrnel 40261 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
149, 11, 12, 13syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
151, 2, 3, 4, 5, 6, 7trlval2 40285 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → (𝑅𝐺) = (((𝐹𝑃) (𝐺‘(𝐹𝑃))) 𝑊))
169, 10, 14, 15syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑅𝐺) = (((𝐹𝑃) (𝐺‘(𝐹𝑃))) 𝑊))
1716oveq2d 7370 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹𝑃) (𝑅𝐺)) = ((𝐹𝑃) (((𝐹𝑃) (𝐺‘(𝐹𝑃))) 𝑊)))
18 simp12l 1287 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝐴)
191, 4, 5, 6ltrncoat 40266 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ 𝑃𝐴) → (𝐺‘(𝐹𝑃)) ∈ 𝐴)
209, 10, 11, 18, 19syl121anc 1377 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐺‘(𝐹𝑃)) ∈ 𝐴)
21 eqid 2733 . . . 4 (((𝐹𝑃) (𝐺‘(𝐹𝑃))) 𝑊) = (((𝐹𝑃) (𝐺‘(𝐹𝑃))) 𝑊)
221, 2, 3, 4, 5, 21cdleme0cp 40336 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊) ∧ (𝐺‘(𝐹𝑃)) ∈ 𝐴)) → ((𝐹𝑃) (((𝐹𝑃) (𝐺‘(𝐹𝑃))) 𝑊)) = ((𝐹𝑃) (𝐺‘(𝐹𝑃))))
239, 14, 20, 22syl12anc 836 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹𝑃) (((𝐹𝑃) (𝐺‘(𝐹𝑃))) 𝑊)) = ((𝐹𝑃) (𝐺‘(𝐹𝑃))))
248, 17, 233eqtrd 2772 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑃) (𝐺‘(𝐹𝑃))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057   class class class wbr 5095  cfv 6488  (class class class)co 7354  lecple 17172  joincjn 18221  meetcmee 18222  Atomscatm 39385  HLchlt 39472  LHypclh 40106  LTrncltrn 40223  trLctrl 40280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-riotaBAD 39075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-1st 7929  df-2nd 7930  df-undef 8211  df-map 8760  df-proset 18204  df-poset 18223  df-plt 18238  df-lub 18254  df-glb 18255  df-join 18256  df-meet 18257  df-p0 18333  df-p1 18334  df-lat 18342  df-clat 18409  df-oposet 39298  df-ol 39300  df-oml 39301  df-covers 39388  df-ats 39389  df-atl 39420  df-cvlat 39444  df-hlat 39473  df-llines 39620  df-lplanes 39621  df-lvols 39622  df-lines 39623  df-psubsp 39625  df-pmap 39626  df-padd 39918  df-lhyp 40110  df-laut 40111  df-ldil 40226  df-ltrn 40227  df-trl 40281
This theorem is referenced by:  cdlemg17g  40789
  Copyright terms: Public domain W3C validator