MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrzrhmul Structured version   Visualization version   GIF version

Theorem dchrzrhmul 25974
Description: A Dirichlet character is completely multiplicative. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrelbas4.l 𝐿 = (ℤRHom‘𝑍)
dchrzrh1.x (𝜑𝑋𝐷)
dchrzrh1.a (𝜑𝐴 ∈ ℤ)
dchrzrh1.c (𝜑𝐶 ∈ ℤ)
Assertion
Ref Expression
dchrzrhmul (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿𝐴)) · (𝑋‘(𝐿𝐶))))

Proof of Theorem dchrzrhmul
StepHypRef Expression
1 dchrzrh1.x . . . . . . . . 9 (𝜑𝑋𝐷)
2 dchrmhm.g . . . . . . . . . 10 𝐺 = (DChr‘𝑁)
3 dchrmhm.b . . . . . . . . . 10 𝐷 = (Base‘𝐺)
42, 3dchrrcl 25968 . . . . . . . . 9 (𝑋𝐷𝑁 ∈ ℕ)
51, 4syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
65nnnn0d 12029 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
7 dchrmhm.z . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
87zncrng 20356 . . . . . . 7 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
96, 8syl 17 . . . . . 6 (𝜑𝑍 ∈ CRing)
10 crngring 19421 . . . . . 6 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
119, 10syl 17 . . . . 5 (𝜑𝑍 ∈ Ring)
12 dchrelbas4.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
1312zrhrhm 20325 . . . . 5 (𝑍 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑍))
1411, 13syl 17 . . . 4 (𝜑𝐿 ∈ (ℤring RingHom 𝑍))
15 dchrzrh1.a . . . 4 (𝜑𝐴 ∈ ℤ)
16 dchrzrh1.c . . . 4 (𝜑𝐶 ∈ ℤ)
17 zringbas 20288 . . . . 5 ℤ = (Base‘ℤring)
18 zringmulr 20291 . . . . 5 · = (.r‘ℤring)
19 eqid 2738 . . . . 5 (.r𝑍) = (.r𝑍)
2017, 18, 19rhmmul 19594 . . . 4 ((𝐿 ∈ (ℤring RingHom 𝑍) ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐿‘(𝐴 · 𝐶)) = ((𝐿𝐴)(.r𝑍)(𝐿𝐶)))
2114, 15, 16, 20syl3anc 1372 . . 3 (𝜑 → (𝐿‘(𝐴 · 𝐶)) = ((𝐿𝐴)(.r𝑍)(𝐿𝐶)))
2221fveq2d 6672 . 2 (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = (𝑋‘((𝐿𝐴)(.r𝑍)(𝐿𝐶))))
232, 7, 3dchrmhm 25969 . . . 4 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
2423, 1sseldi 3873 . . 3 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
25 eqid 2738 . . . . . 6 (Base‘𝑍) = (Base‘𝑍)
2617, 25rhmf 19593 . . . . 5 (𝐿 ∈ (ℤring RingHom 𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
2714, 26syl 17 . . . 4 (𝜑𝐿:ℤ⟶(Base‘𝑍))
2827, 15ffvelrnd 6856 . . 3 (𝜑 → (𝐿𝐴) ∈ (Base‘𝑍))
2927, 16ffvelrnd 6856 . . 3 (𝜑 → (𝐿𝐶) ∈ (Base‘𝑍))
30 eqid 2738 . . . . 5 (mulGrp‘𝑍) = (mulGrp‘𝑍)
3130, 25mgpbas 19357 . . . 4 (Base‘𝑍) = (Base‘(mulGrp‘𝑍))
3230, 19mgpplusg 19355 . . . 4 (.r𝑍) = (+g‘(mulGrp‘𝑍))
33 eqid 2738 . . . . 5 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
34 cnfldmul 20216 . . . . 5 · = (.r‘ℂfld)
3533, 34mgpplusg 19355 . . . 4 · = (+g‘(mulGrp‘ℂfld))
3631, 32, 35mhmlin 18072 . . 3 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (𝐿𝐴) ∈ (Base‘𝑍) ∧ (𝐿𝐶) ∈ (Base‘𝑍)) → (𝑋‘((𝐿𝐴)(.r𝑍)(𝐿𝐶))) = ((𝑋‘(𝐿𝐴)) · (𝑋‘(𝐿𝐶))))
3724, 28, 29, 36syl3anc 1372 . 2 (𝜑 → (𝑋‘((𝐿𝐴)(.r𝑍)(𝐿𝐶))) = ((𝑋‘(𝐿𝐴)) · (𝑋‘(𝐿𝐶))))
3822, 37eqtrd 2773 1 (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿𝐴)) · (𝑋‘(𝐿𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2113  wf 6329  cfv 6333  (class class class)co 7164   · cmul 10613  cn 11709  0cn0 11969  cz 12055  Basecbs 16579  .rcmulr 16662   MndHom cmhm 18063  mulGrpcmgp 19351  Ringcrg 19409  CRingccrg 19410   RingHom crh 19579  fldccnfld 20210  ringzring 20282  ℤRHomczrh 20313  ℤ/nczn 20316  DChrcdchr 25960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-addf 10687  ax-mulf 10688
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-tpos 7914  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-ec 8315  df-qs 8319  df-map 8432  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-sup 8972  df-inf 8973  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-7 11777  df-8 11778  df-9 11779  df-n0 11970  df-z 12056  df-dec 12173  df-uz 12318  df-fz 12975  df-seq 13454  df-struct 16581  df-ndx 16582  df-slot 16583  df-base 16585  df-sets 16586  df-ress 16587  df-plusg 16674  df-mulr 16675  df-starv 16676  df-sca 16677  df-vsca 16678  df-ip 16679  df-tset 16680  df-ple 16681  df-ds 16683  df-unif 16684  df-0g 16811  df-imas 16877  df-qus 16878  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-mhm 18065  df-grp 18215  df-minusg 18216  df-sbg 18217  df-mulg 18336  df-subg 18387  df-nsg 18388  df-eqg 18389  df-ghm 18467  df-cmn 19019  df-abl 19020  df-mgp 19352  df-ur 19364  df-ring 19411  df-cring 19412  df-oppr 19488  df-rnghom 19582  df-subrg 19645  df-lmod 19748  df-lss 19816  df-lsp 19856  df-sra 20056  df-rgmod 20057  df-lidl 20058  df-rsp 20059  df-2idl 20117  df-cnfld 20211  df-zring 20283  df-zrh 20317  df-zn 20320  df-dchr 25961
This theorem is referenced by:  dchrmusum2  26222  dchrvmasumlem1  26223  dchrvmasum2lem  26224  dchrisum0fmul  26234
  Copyright terms: Public domain W3C validator