![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrzrhmul | Structured version Visualization version GIF version |
Description: A Dirichlet character is completely multiplicative. (Contributed by Mario Carneiro, 4-May-2016.) |
Ref | Expression |
---|---|
dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
dchrelbas4.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
dchrzrh1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrzrh1.a | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
dchrzrh1.c | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
Ref | Expression |
---|---|
dchrzrhmul | ⊢ (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrzrh1.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
2 | dchrmhm.g | . . . . . . . . . 10 ⊢ 𝐺 = (DChr‘𝑁) | |
3 | dchrmhm.b | . . . . . . . . . 10 ⊢ 𝐷 = (Base‘𝐺) | |
4 | 2, 3 | dchrrcl 27302 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
5 | 1, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
6 | 5 | nnnn0d 12613 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
7 | dchrmhm.z | . . . . . . . 8 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
8 | 7 | zncrng 21586 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
9 | 6, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ CRing) |
10 | crngring 20272 | . . . . . 6 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ Ring) |
12 | dchrelbas4.l | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
13 | 12 | zrhrhm 21545 | . . . . 5 ⊢ (𝑍 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑍)) |
14 | 11, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (ℤring RingHom 𝑍)) |
15 | dchrzrh1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
16 | dchrzrh1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
17 | zringbas 21487 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
18 | zringmulr 21491 | . . . . 5 ⊢ · = (.r‘ℤring) | |
19 | eqid 2740 | . . . . 5 ⊢ (.r‘𝑍) = (.r‘𝑍) | |
20 | 17, 18, 19 | rhmmul 20512 | . . . 4 ⊢ ((𝐿 ∈ (ℤring RingHom 𝑍) ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐿‘(𝐴 · 𝐶)) = ((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) |
21 | 14, 15, 16, 20 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (𝐿‘(𝐴 · 𝐶)) = ((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) |
22 | 21 | fveq2d 6924 | . 2 ⊢ (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = (𝑋‘((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶)))) |
23 | 2, 7, 3 | dchrmhm 27303 | . . . 4 ⊢ 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) |
24 | 23, 1 | sselid 4006 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
25 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
26 | 17, 25 | rhmf 20511 | . . . . 5 ⊢ (𝐿 ∈ (ℤring RingHom 𝑍) → 𝐿:ℤ⟶(Base‘𝑍)) |
27 | 14, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑍)) |
28 | 27, 15 | ffvelcdmd 7119 | . . 3 ⊢ (𝜑 → (𝐿‘𝐴) ∈ (Base‘𝑍)) |
29 | 27, 16 | ffvelcdmd 7119 | . . 3 ⊢ (𝜑 → (𝐿‘𝐶) ∈ (Base‘𝑍)) |
30 | eqid 2740 | . . . . 5 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
31 | 30, 25 | mgpbas 20167 | . . . 4 ⊢ (Base‘𝑍) = (Base‘(mulGrp‘𝑍)) |
32 | 30, 19 | mgpplusg 20165 | . . . 4 ⊢ (.r‘𝑍) = (+g‘(mulGrp‘𝑍)) |
33 | eqid 2740 | . . . . 5 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
34 | cnfldmul 21395 | . . . . 5 ⊢ · = (.r‘ℂfld) | |
35 | 33, 34 | mgpplusg 20165 | . . . 4 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
36 | 31, 32, 35 | mhmlin 18828 | . . 3 ⊢ ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (𝐿‘𝐴) ∈ (Base‘𝑍) ∧ (𝐿‘𝐶) ∈ (Base‘𝑍)) → (𝑋‘((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
37 | 24, 28, 29, 36 | syl3anc 1371 | . 2 ⊢ (𝜑 → (𝑋‘((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
38 | 22, 37 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 · cmul 11189 ℕcn 12293 ℕ0cn0 12553 ℤcz 12639 Basecbs 17258 .rcmulr 17312 MndHom cmhm 18816 mulGrpcmgp 20161 Ringcrg 20260 CRingccrg 20261 RingHom crh 20495 ℂfldccnfld 21387 ℤringczring 21480 ℤRHomczrh 21533 ℤ/nℤczn 21536 DChrcdchr 27294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-ec 8765 df-qs 8769 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-seq 14053 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-imas 17568 df-qus 17569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-nsg 19164 df-eqg 19165 df-ghm 19253 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-lmod 20882 df-lss 20953 df-lsp 20993 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-rsp 21242 df-2idl 21283 df-cnfld 21388 df-zring 21481 df-zrh 21537 df-zn 21540 df-dchr 27295 |
This theorem is referenced by: dchrmusum2 27556 dchrvmasumlem1 27557 dchrvmasum2lem 27558 dchrisum0fmul 27568 |
Copyright terms: Public domain | W3C validator |