| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrzrhmul | Structured version Visualization version GIF version | ||
| Description: A Dirichlet character is completely multiplicative. (Contributed by Mario Carneiro, 4-May-2016.) |
| Ref | Expression |
|---|---|
| dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
| dchrelbas4.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
| dchrzrh1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| dchrzrh1.a | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| dchrzrh1.c | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| Ref | Expression |
|---|---|
| dchrzrhmul | ⊢ (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchrzrh1.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 2 | dchrmhm.g | . . . . . . . . . 10 ⊢ 𝐺 = (DChr‘𝑁) | |
| 3 | dchrmhm.b | . . . . . . . . . 10 ⊢ 𝐷 = (Base‘𝐺) | |
| 4 | 2, 3 | dchrrcl 27157 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| 5 | 1, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 6 | 5 | nnnn0d 12509 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 7 | dchrmhm.z | . . . . . . . 8 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 8 | 7 | zncrng 21460 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
| 9 | 6, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ CRing) |
| 10 | crngring 20160 | . . . . . 6 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ Ring) |
| 12 | dchrelbas4.l | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
| 13 | 12 | zrhrhm 21427 | . . . . 5 ⊢ (𝑍 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑍)) |
| 14 | 11, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (ℤring RingHom 𝑍)) |
| 15 | dchrzrh1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 16 | dchrzrh1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 17 | zringbas 21369 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
| 18 | zringmulr 21373 | . . . . 5 ⊢ · = (.r‘ℤring) | |
| 19 | eqid 2730 | . . . . 5 ⊢ (.r‘𝑍) = (.r‘𝑍) | |
| 20 | 17, 18, 19 | rhmmul 20401 | . . . 4 ⊢ ((𝐿 ∈ (ℤring RingHom 𝑍) ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐿‘(𝐴 · 𝐶)) = ((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) |
| 21 | 14, 15, 16, 20 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐿‘(𝐴 · 𝐶)) = ((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) |
| 22 | 21 | fveq2d 6864 | . 2 ⊢ (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = (𝑋‘((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶)))) |
| 23 | 2, 7, 3 | dchrmhm 27158 | . . . 4 ⊢ 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) |
| 24 | 23, 1 | sselid 3946 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
| 25 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
| 26 | 17, 25 | rhmf 20400 | . . . . 5 ⊢ (𝐿 ∈ (ℤring RingHom 𝑍) → 𝐿:ℤ⟶(Base‘𝑍)) |
| 27 | 14, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑍)) |
| 28 | 27, 15 | ffvelcdmd 7059 | . . 3 ⊢ (𝜑 → (𝐿‘𝐴) ∈ (Base‘𝑍)) |
| 29 | 27, 16 | ffvelcdmd 7059 | . . 3 ⊢ (𝜑 → (𝐿‘𝐶) ∈ (Base‘𝑍)) |
| 30 | eqid 2730 | . . . . 5 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
| 31 | 30, 25 | mgpbas 20060 | . . . 4 ⊢ (Base‘𝑍) = (Base‘(mulGrp‘𝑍)) |
| 32 | 30, 19 | mgpplusg 20059 | . . . 4 ⊢ (.r‘𝑍) = (+g‘(mulGrp‘𝑍)) |
| 33 | eqid 2730 | . . . . 5 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 34 | cnfldmul 21278 | . . . . 5 ⊢ · = (.r‘ℂfld) | |
| 35 | 33, 34 | mgpplusg 20059 | . . . 4 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
| 36 | 31, 32, 35 | mhmlin 18726 | . . 3 ⊢ ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (𝐿‘𝐴) ∈ (Base‘𝑍) ∧ (𝐿‘𝐶) ∈ (Base‘𝑍)) → (𝑋‘((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
| 37 | 24, 28, 29, 36 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑋‘((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
| 38 | 22, 37 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 · cmul 11079 ℕcn 12187 ℕ0cn0 12448 ℤcz 12535 Basecbs 17185 .rcmulr 17227 MndHom cmhm 18714 mulGrpcmgp 20055 Ringcrg 20148 CRingccrg 20149 RingHom crh 20384 ℂfldccnfld 21270 ℤringczring 21362 ℤRHomczrh 21415 ℤ/nℤczn 21418 DChrcdchr 27149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-addf 11153 ax-mulf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-ec 8675 df-qs 8679 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-seq 13973 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-0g 17410 df-imas 17477 df-qus 17478 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-subg 19061 df-nsg 19062 df-eqg 19063 df-ghm 19151 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-cring 20151 df-oppr 20252 df-rhm 20387 df-subrng 20461 df-subrg 20485 df-lmod 20774 df-lss 20844 df-lsp 20884 df-sra 21086 df-rgmod 21087 df-lidl 21124 df-rsp 21125 df-2idl 21166 df-cnfld 21271 df-zring 21363 df-zrh 21419 df-zn 21422 df-dchr 27150 |
| This theorem is referenced by: dchrmusum2 27411 dchrvmasumlem1 27412 dchrvmasum2lem 27413 dchrisum0fmul 27423 |
| Copyright terms: Public domain | W3C validator |