| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrzrhmul | Structured version Visualization version GIF version | ||
| Description: A Dirichlet character is completely multiplicative. (Contributed by Mario Carneiro, 4-May-2016.) |
| Ref | Expression |
|---|---|
| dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
| dchrelbas4.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
| dchrzrh1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| dchrzrh1.a | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| dchrzrh1.c | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| Ref | Expression |
|---|---|
| dchrzrhmul | ⊢ (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchrzrh1.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 2 | dchrmhm.g | . . . . . . . . . 10 ⊢ 𝐺 = (DChr‘𝑁) | |
| 3 | dchrmhm.b | . . . . . . . . . 10 ⊢ 𝐷 = (Base‘𝐺) | |
| 4 | 2, 3 | dchrrcl 27171 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| 5 | 1, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 6 | 5 | nnnn0d 12434 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 7 | dchrmhm.z | . . . . . . . 8 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 8 | 7 | zncrng 21474 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
| 9 | 6, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ CRing) |
| 10 | crngring 20156 | . . . . . 6 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ Ring) |
| 12 | dchrelbas4.l | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
| 13 | 12 | zrhrhm 21441 | . . . . 5 ⊢ (𝑍 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑍)) |
| 14 | 11, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (ℤring RingHom 𝑍)) |
| 15 | dchrzrh1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 16 | dchrzrh1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 17 | zringbas 21383 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
| 18 | zringmulr 21387 | . . . . 5 ⊢ · = (.r‘ℤring) | |
| 19 | eqid 2730 | . . . . 5 ⊢ (.r‘𝑍) = (.r‘𝑍) | |
| 20 | 17, 18, 19 | rhmmul 20396 | . . . 4 ⊢ ((𝐿 ∈ (ℤring RingHom 𝑍) ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐿‘(𝐴 · 𝐶)) = ((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) |
| 21 | 14, 15, 16, 20 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐿‘(𝐴 · 𝐶)) = ((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) |
| 22 | 21 | fveq2d 6821 | . 2 ⊢ (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = (𝑋‘((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶)))) |
| 23 | 2, 7, 3 | dchrmhm 27172 | . . . 4 ⊢ 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) |
| 24 | 23, 1 | sselid 3930 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
| 25 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
| 26 | 17, 25 | rhmf 20395 | . . . . 5 ⊢ (𝐿 ∈ (ℤring RingHom 𝑍) → 𝐿:ℤ⟶(Base‘𝑍)) |
| 27 | 14, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑍)) |
| 28 | 27, 15 | ffvelcdmd 7013 | . . 3 ⊢ (𝜑 → (𝐿‘𝐴) ∈ (Base‘𝑍)) |
| 29 | 27, 16 | ffvelcdmd 7013 | . . 3 ⊢ (𝜑 → (𝐿‘𝐶) ∈ (Base‘𝑍)) |
| 30 | eqid 2730 | . . . . 5 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
| 31 | 30, 25 | mgpbas 20056 | . . . 4 ⊢ (Base‘𝑍) = (Base‘(mulGrp‘𝑍)) |
| 32 | 30, 19 | mgpplusg 20055 | . . . 4 ⊢ (.r‘𝑍) = (+g‘(mulGrp‘𝑍)) |
| 33 | eqid 2730 | . . . . 5 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 34 | cnfldmul 21292 | . . . . 5 ⊢ · = (.r‘ℂfld) | |
| 35 | 33, 34 | mgpplusg 20055 | . . . 4 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
| 36 | 31, 32, 35 | mhmlin 18693 | . . 3 ⊢ ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (𝐿‘𝐴) ∈ (Base‘𝑍) ∧ (𝐿‘𝐶) ∈ (Base‘𝑍)) → (𝑋‘((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
| 37 | 24, 28, 29, 36 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑋‘((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
| 38 | 22, 37 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 · cmul 11003 ℕcn 12117 ℕ0cn0 12373 ℤcz 12460 Basecbs 17112 .rcmulr 17154 MndHom cmhm 18681 mulGrpcmgp 20051 Ringcrg 20144 CRingccrg 20145 RingHom crh 20380 ℂfldccnfld 21284 ℤringczring 21376 ℤRHomczrh 21429 ℤ/nℤczn 21432 DChrcdchr 27163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-addf 11077 ax-mulf 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-ec 8619 df-qs 8623 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-seq 13901 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-0g 17337 df-imas 17404 df-qus 17405 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-grp 18841 df-minusg 18842 df-sbg 18843 df-mulg 18973 df-subg 19028 df-nsg 19029 df-eqg 19030 df-ghm 19118 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-cring 20147 df-oppr 20248 df-rhm 20383 df-subrng 20454 df-subrg 20478 df-lmod 20788 df-lss 20858 df-lsp 20898 df-sra 21100 df-rgmod 21101 df-lidl 21138 df-rsp 21139 df-2idl 21180 df-cnfld 21285 df-zring 21377 df-zrh 21433 df-zn 21436 df-dchr 27164 |
| This theorem is referenced by: dchrmusum2 27425 dchrvmasumlem1 27426 dchrvmasum2lem 27427 dchrisum0fmul 27437 |
| Copyright terms: Public domain | W3C validator |