MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrzrhmul Structured version   Visualization version   GIF version

Theorem dchrzrhmul 27177
Description: A Dirichlet character is completely multiplicative. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrelbas4.l 𝐿 = (ℤRHom‘𝑍)
dchrzrh1.x (𝜑𝑋𝐷)
dchrzrh1.a (𝜑𝐴 ∈ ℤ)
dchrzrh1.c (𝜑𝐶 ∈ ℤ)
Assertion
Ref Expression
dchrzrhmul (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿𝐴)) · (𝑋‘(𝐿𝐶))))

Proof of Theorem dchrzrhmul
StepHypRef Expression
1 dchrzrh1.x . . . . . . . . 9 (𝜑𝑋𝐷)
2 dchrmhm.g . . . . . . . . . 10 𝐺 = (DChr‘𝑁)
3 dchrmhm.b . . . . . . . . . 10 𝐷 = (Base‘𝐺)
42, 3dchrrcl 27171 . . . . . . . . 9 (𝑋𝐷𝑁 ∈ ℕ)
51, 4syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
65nnnn0d 12434 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
7 dchrmhm.z . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
87zncrng 21474 . . . . . . 7 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
96, 8syl 17 . . . . . 6 (𝜑𝑍 ∈ CRing)
10 crngring 20156 . . . . . 6 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
119, 10syl 17 . . . . 5 (𝜑𝑍 ∈ Ring)
12 dchrelbas4.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
1312zrhrhm 21441 . . . . 5 (𝑍 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑍))
1411, 13syl 17 . . . 4 (𝜑𝐿 ∈ (ℤring RingHom 𝑍))
15 dchrzrh1.a . . . 4 (𝜑𝐴 ∈ ℤ)
16 dchrzrh1.c . . . 4 (𝜑𝐶 ∈ ℤ)
17 zringbas 21383 . . . . 5 ℤ = (Base‘ℤring)
18 zringmulr 21387 . . . . 5 · = (.r‘ℤring)
19 eqid 2730 . . . . 5 (.r𝑍) = (.r𝑍)
2017, 18, 19rhmmul 20396 . . . 4 ((𝐿 ∈ (ℤring RingHom 𝑍) ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐿‘(𝐴 · 𝐶)) = ((𝐿𝐴)(.r𝑍)(𝐿𝐶)))
2114, 15, 16, 20syl3anc 1373 . . 3 (𝜑 → (𝐿‘(𝐴 · 𝐶)) = ((𝐿𝐴)(.r𝑍)(𝐿𝐶)))
2221fveq2d 6821 . 2 (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = (𝑋‘((𝐿𝐴)(.r𝑍)(𝐿𝐶))))
232, 7, 3dchrmhm 27172 . . . 4 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
2423, 1sselid 3930 . . 3 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
25 eqid 2730 . . . . . 6 (Base‘𝑍) = (Base‘𝑍)
2617, 25rhmf 20395 . . . . 5 (𝐿 ∈ (ℤring RingHom 𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
2714, 26syl 17 . . . 4 (𝜑𝐿:ℤ⟶(Base‘𝑍))
2827, 15ffvelcdmd 7013 . . 3 (𝜑 → (𝐿𝐴) ∈ (Base‘𝑍))
2927, 16ffvelcdmd 7013 . . 3 (𝜑 → (𝐿𝐶) ∈ (Base‘𝑍))
30 eqid 2730 . . . . 5 (mulGrp‘𝑍) = (mulGrp‘𝑍)
3130, 25mgpbas 20056 . . . 4 (Base‘𝑍) = (Base‘(mulGrp‘𝑍))
3230, 19mgpplusg 20055 . . . 4 (.r𝑍) = (+g‘(mulGrp‘𝑍))
33 eqid 2730 . . . . 5 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
34 cnfldmul 21292 . . . . 5 · = (.r‘ℂfld)
3533, 34mgpplusg 20055 . . . 4 · = (+g‘(mulGrp‘ℂfld))
3631, 32, 35mhmlin 18693 . . 3 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (𝐿𝐴) ∈ (Base‘𝑍) ∧ (𝐿𝐶) ∈ (Base‘𝑍)) → (𝑋‘((𝐿𝐴)(.r𝑍)(𝐿𝐶))) = ((𝑋‘(𝐿𝐴)) · (𝑋‘(𝐿𝐶))))
3724, 28, 29, 36syl3anc 1373 . 2 (𝜑 → (𝑋‘((𝐿𝐴)(.r𝑍)(𝐿𝐶))) = ((𝑋‘(𝐿𝐴)) · (𝑋‘(𝐿𝐶))))
3822, 37eqtrd 2765 1 (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿𝐴)) · (𝑋‘(𝐿𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  wf 6473  cfv 6477  (class class class)co 7341   · cmul 11003  cn 12117  0cn0 12373  cz 12460  Basecbs 17112  .rcmulr 17154   MndHom cmhm 18681  mulGrpcmgp 20051  Ringcrg 20144  CRingccrg 20145   RingHom crh 20380  fldccnfld 21284  ringczring 21376  ℤRHomczrh 21429  ℤ/nczn 21432  DChrcdchr 27163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-addf 11077  ax-mulf 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-ec 8619  df-qs 8623  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-seq 13901  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-0g 17337  df-imas 17404  df-qus 17405  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-nsg 19029  df-eqg 19030  df-ghm 19118  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-oppr 20248  df-rhm 20383  df-subrng 20454  df-subrg 20478  df-lmod 20788  df-lss 20858  df-lsp 20898  df-sra 21100  df-rgmod 21101  df-lidl 21138  df-rsp 21139  df-2idl 21180  df-cnfld 21285  df-zring 21377  df-zrh 21433  df-zn 21436  df-dchr 27164
This theorem is referenced by:  dchrmusum2  27425  dchrvmasumlem1  27426  dchrvmasum2lem  27427  dchrisum0fmul  27437
  Copyright terms: Public domain W3C validator