Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dchrzrhmul | Structured version Visualization version GIF version |
Description: A Dirichlet character is completely multiplicative. (Contributed by Mario Carneiro, 4-May-2016.) |
Ref | Expression |
---|---|
dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
dchrelbas4.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
dchrzrh1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrzrh1.a | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
dchrzrh1.c | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
Ref | Expression |
---|---|
dchrzrhmul | ⊢ (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrzrh1.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
2 | dchrmhm.g | . . . . . . . . . 10 ⊢ 𝐺 = (DChr‘𝑁) | |
3 | dchrmhm.b | . . . . . . . . . 10 ⊢ 𝐷 = (Base‘𝐺) | |
4 | 2, 3 | dchrrcl 25968 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
5 | 1, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
6 | 5 | nnnn0d 12029 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
7 | dchrmhm.z | . . . . . . . 8 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
8 | 7 | zncrng 20356 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
9 | 6, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ CRing) |
10 | crngring 19421 | . . . . . 6 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ Ring) |
12 | dchrelbas4.l | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
13 | 12 | zrhrhm 20325 | . . . . 5 ⊢ (𝑍 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑍)) |
14 | 11, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (ℤring RingHom 𝑍)) |
15 | dchrzrh1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
16 | dchrzrh1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
17 | zringbas 20288 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
18 | zringmulr 20291 | . . . . 5 ⊢ · = (.r‘ℤring) | |
19 | eqid 2738 | . . . . 5 ⊢ (.r‘𝑍) = (.r‘𝑍) | |
20 | 17, 18, 19 | rhmmul 19594 | . . . 4 ⊢ ((𝐿 ∈ (ℤring RingHom 𝑍) ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐿‘(𝐴 · 𝐶)) = ((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) |
21 | 14, 15, 16, 20 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝐿‘(𝐴 · 𝐶)) = ((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) |
22 | 21 | fveq2d 6672 | . 2 ⊢ (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = (𝑋‘((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶)))) |
23 | 2, 7, 3 | dchrmhm 25969 | . . . 4 ⊢ 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) |
24 | 23, 1 | sseldi 3873 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
25 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
26 | 17, 25 | rhmf 19593 | . . . . 5 ⊢ (𝐿 ∈ (ℤring RingHom 𝑍) → 𝐿:ℤ⟶(Base‘𝑍)) |
27 | 14, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑍)) |
28 | 27, 15 | ffvelrnd 6856 | . . 3 ⊢ (𝜑 → (𝐿‘𝐴) ∈ (Base‘𝑍)) |
29 | 27, 16 | ffvelrnd 6856 | . . 3 ⊢ (𝜑 → (𝐿‘𝐶) ∈ (Base‘𝑍)) |
30 | eqid 2738 | . . . . 5 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
31 | 30, 25 | mgpbas 19357 | . . . 4 ⊢ (Base‘𝑍) = (Base‘(mulGrp‘𝑍)) |
32 | 30, 19 | mgpplusg 19355 | . . . 4 ⊢ (.r‘𝑍) = (+g‘(mulGrp‘𝑍)) |
33 | eqid 2738 | . . . . 5 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
34 | cnfldmul 20216 | . . . . 5 ⊢ · = (.r‘ℂfld) | |
35 | 33, 34 | mgpplusg 19355 | . . . 4 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
36 | 31, 32, 35 | mhmlin 18072 | . . 3 ⊢ ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (𝐿‘𝐴) ∈ (Base‘𝑍) ∧ (𝐿‘𝐶) ∈ (Base‘𝑍)) → (𝑋‘((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
37 | 24, 28, 29, 36 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝑋‘((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
38 | 22, 37 | eqtrd 2773 | 1 ⊢ (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2113 ⟶wf 6329 ‘cfv 6333 (class class class)co 7164 · cmul 10613 ℕcn 11709 ℕ0cn0 11969 ℤcz 12055 Basecbs 16579 .rcmulr 16662 MndHom cmhm 18063 mulGrpcmgp 19351 Ringcrg 19409 CRingccrg 19410 RingHom crh 19579 ℂfldccnfld 20210 ℤringzring 20282 ℤRHomczrh 20313 ℤ/nℤczn 20316 DChrcdchr 25960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 ax-addf 10687 ax-mulf 10688 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-1st 7707 df-2nd 7708 df-tpos 7914 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-er 8313 df-ec 8315 df-qs 8319 df-map 8432 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-sup 8972 df-inf 8973 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-nn 11710 df-2 11772 df-3 11773 df-4 11774 df-5 11775 df-6 11776 df-7 11777 df-8 11778 df-9 11779 df-n0 11970 df-z 12056 df-dec 12173 df-uz 12318 df-fz 12975 df-seq 13454 df-struct 16581 df-ndx 16582 df-slot 16583 df-base 16585 df-sets 16586 df-ress 16587 df-plusg 16674 df-mulr 16675 df-starv 16676 df-sca 16677 df-vsca 16678 df-ip 16679 df-tset 16680 df-ple 16681 df-ds 16683 df-unif 16684 df-0g 16811 df-imas 16877 df-qus 16878 df-mgm 17961 df-sgrp 18010 df-mnd 18021 df-mhm 18065 df-grp 18215 df-minusg 18216 df-sbg 18217 df-mulg 18336 df-subg 18387 df-nsg 18388 df-eqg 18389 df-ghm 18467 df-cmn 19019 df-abl 19020 df-mgp 19352 df-ur 19364 df-ring 19411 df-cring 19412 df-oppr 19488 df-rnghom 19582 df-subrg 19645 df-lmod 19748 df-lss 19816 df-lsp 19856 df-sra 20056 df-rgmod 20057 df-lidl 20058 df-rsp 20059 df-2idl 20117 df-cnfld 20211 df-zring 20283 df-zrh 20317 df-zn 20320 df-dchr 25961 |
This theorem is referenced by: dchrmusum2 26222 dchrvmasumlem1 26223 dchrvmasum2lem 26224 dchrisum0fmul 26234 |
Copyright terms: Public domain | W3C validator |