MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrzrhmul Structured version   Visualization version   GIF version

Theorem dchrzrhmul 25830
Description: A Dirichlet character is completely multiplicative. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrelbas4.l 𝐿 = (ℤRHom‘𝑍)
dchrzrh1.x (𝜑𝑋𝐷)
dchrzrh1.a (𝜑𝐴 ∈ ℤ)
dchrzrh1.c (𝜑𝐶 ∈ ℤ)
Assertion
Ref Expression
dchrzrhmul (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿𝐴)) · (𝑋‘(𝐿𝐶))))

Proof of Theorem dchrzrhmul
StepHypRef Expression
1 dchrzrh1.x . . . . . . . . 9 (𝜑𝑋𝐷)
2 dchrmhm.g . . . . . . . . . 10 𝐺 = (DChr‘𝑁)
3 dchrmhm.b . . . . . . . . . 10 𝐷 = (Base‘𝐺)
42, 3dchrrcl 25824 . . . . . . . . 9 (𝑋𝐷𝑁 ∈ ℕ)
51, 4syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
65nnnn0d 11943 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
7 dchrmhm.z . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
87zncrng 20236 . . . . . . 7 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
96, 8syl 17 . . . . . 6 (𝜑𝑍 ∈ CRing)
10 crngring 19302 . . . . . 6 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
119, 10syl 17 . . . . 5 (𝜑𝑍 ∈ Ring)
12 dchrelbas4.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
1312zrhrhm 20205 . . . . 5 (𝑍 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑍))
1411, 13syl 17 . . . 4 (𝜑𝐿 ∈ (ℤring RingHom 𝑍))
15 dchrzrh1.a . . . 4 (𝜑𝐴 ∈ ℤ)
16 dchrzrh1.c . . . 4 (𝜑𝐶 ∈ ℤ)
17 zringbas 20169 . . . . 5 ℤ = (Base‘ℤring)
18 zringmulr 20172 . . . . 5 · = (.r‘ℤring)
19 eqid 2798 . . . . 5 (.r𝑍) = (.r𝑍)
2017, 18, 19rhmmul 19475 . . . 4 ((𝐿 ∈ (ℤring RingHom 𝑍) ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐿‘(𝐴 · 𝐶)) = ((𝐿𝐴)(.r𝑍)(𝐿𝐶)))
2114, 15, 16, 20syl3anc 1368 . . 3 (𝜑 → (𝐿‘(𝐴 · 𝐶)) = ((𝐿𝐴)(.r𝑍)(𝐿𝐶)))
2221fveq2d 6649 . 2 (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = (𝑋‘((𝐿𝐴)(.r𝑍)(𝐿𝐶))))
232, 7, 3dchrmhm 25825 . . . 4 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
2423, 1sseldi 3913 . . 3 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
25 eqid 2798 . . . . . 6 (Base‘𝑍) = (Base‘𝑍)
2617, 25rhmf 19474 . . . . 5 (𝐿 ∈ (ℤring RingHom 𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
2714, 26syl 17 . . . 4 (𝜑𝐿:ℤ⟶(Base‘𝑍))
2827, 15ffvelrnd 6829 . . 3 (𝜑 → (𝐿𝐴) ∈ (Base‘𝑍))
2927, 16ffvelrnd 6829 . . 3 (𝜑 → (𝐿𝐶) ∈ (Base‘𝑍))
30 eqid 2798 . . . . 5 (mulGrp‘𝑍) = (mulGrp‘𝑍)
3130, 25mgpbas 19238 . . . 4 (Base‘𝑍) = (Base‘(mulGrp‘𝑍))
3230, 19mgpplusg 19236 . . . 4 (.r𝑍) = (+g‘(mulGrp‘𝑍))
33 eqid 2798 . . . . 5 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
34 cnfldmul 20097 . . . . 5 · = (.r‘ℂfld)
3533, 34mgpplusg 19236 . . . 4 · = (+g‘(mulGrp‘ℂfld))
3631, 32, 35mhmlin 17955 . . 3 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (𝐿𝐴) ∈ (Base‘𝑍) ∧ (𝐿𝐶) ∈ (Base‘𝑍)) → (𝑋‘((𝐿𝐴)(.r𝑍)(𝐿𝐶))) = ((𝑋‘(𝐿𝐴)) · (𝑋‘(𝐿𝐶))))
3724, 28, 29, 36syl3anc 1368 . 2 (𝜑 → (𝑋‘((𝐿𝐴)(.r𝑍)(𝐿𝐶))) = ((𝑋‘(𝐿𝐴)) · (𝑋‘(𝐿𝐶))))
3822, 37eqtrd 2833 1 (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿𝐴)) · (𝑋‘(𝐿𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wf 6320  cfv 6324  (class class class)co 7135   · cmul 10531  cn 11625  0cn0 11885  cz 11969  Basecbs 16475  .rcmulr 16558   MndHom cmhm 17946  mulGrpcmgp 19232  Ringcrg 19290  CRingccrg 19291   RingHom crh 19460  fldccnfld 20091  ringzring 20163  ℤRHomczrh 20193  ℤ/nczn 20196  DChrcdchr 25816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-seq 13365  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-imas 16773  df-qus 16774  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-nsg 18269  df-eqg 18270  df-ghm 18348  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-rnghom 19463  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-sra 19937  df-rgmod 19938  df-lidl 19939  df-rsp 19940  df-2idl 19998  df-cnfld 20092  df-zring 20164  df-zrh 20197  df-zn 20200  df-dchr 25817
This theorem is referenced by:  dchrmusum2  26078  dchrvmasumlem1  26079  dchrvmasum2lem  26080  dchrisum0fmul  26090
  Copyright terms: Public domain W3C validator