![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrzrhmul | Structured version Visualization version GIF version |
Description: A Dirichlet character is completely multiplicative. (Contributed by Mario Carneiro, 4-May-2016.) |
Ref | Expression |
---|---|
dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
dchrelbas4.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
dchrzrh1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrzrh1.a | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
dchrzrh1.c | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
Ref | Expression |
---|---|
dchrzrhmul | ⊢ (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrzrh1.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
2 | dchrmhm.g | . . . . . . . . . 10 ⊢ 𝐺 = (DChr‘𝑁) | |
3 | dchrmhm.b | . . . . . . . . . 10 ⊢ 𝐷 = (Base‘𝐺) | |
4 | 2, 3 | dchrrcl 26732 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
5 | 1, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
6 | 5 | nnnn0d 12528 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
7 | dchrmhm.z | . . . . . . . 8 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
8 | 7 | zncrng 21091 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
9 | 6, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ CRing) |
10 | crngring 20061 | . . . . . 6 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ Ring) |
12 | dchrelbas4.l | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
13 | 12 | zrhrhm 21052 | . . . . 5 ⊢ (𝑍 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑍)) |
14 | 11, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (ℤring RingHom 𝑍)) |
15 | dchrzrh1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
16 | dchrzrh1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
17 | zringbas 21015 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
18 | zringmulr 21018 | . . . . 5 ⊢ · = (.r‘ℤring) | |
19 | eqid 2732 | . . . . 5 ⊢ (.r‘𝑍) = (.r‘𝑍) | |
20 | 17, 18, 19 | rhmmul 20256 | . . . 4 ⊢ ((𝐿 ∈ (ℤring RingHom 𝑍) ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐿‘(𝐴 · 𝐶)) = ((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) |
21 | 14, 15, 16, 20 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (𝐿‘(𝐴 · 𝐶)) = ((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) |
22 | 21 | fveq2d 6892 | . 2 ⊢ (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = (𝑋‘((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶)))) |
23 | 2, 7, 3 | dchrmhm 26733 | . . . 4 ⊢ 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) |
24 | 23, 1 | sselid 3979 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
25 | eqid 2732 | . . . . . 6 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
26 | 17, 25 | rhmf 20255 | . . . . 5 ⊢ (𝐿 ∈ (ℤring RingHom 𝑍) → 𝐿:ℤ⟶(Base‘𝑍)) |
27 | 14, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑍)) |
28 | 27, 15 | ffvelcdmd 7084 | . . 3 ⊢ (𝜑 → (𝐿‘𝐴) ∈ (Base‘𝑍)) |
29 | 27, 16 | ffvelcdmd 7084 | . . 3 ⊢ (𝜑 → (𝐿‘𝐶) ∈ (Base‘𝑍)) |
30 | eqid 2732 | . . . . 5 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
31 | 30, 25 | mgpbas 19987 | . . . 4 ⊢ (Base‘𝑍) = (Base‘(mulGrp‘𝑍)) |
32 | 30, 19 | mgpplusg 19985 | . . . 4 ⊢ (.r‘𝑍) = (+g‘(mulGrp‘𝑍)) |
33 | eqid 2732 | . . . . 5 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
34 | cnfldmul 20942 | . . . . 5 ⊢ · = (.r‘ℂfld) | |
35 | 33, 34 | mgpplusg 19985 | . . . 4 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
36 | 31, 32, 35 | mhmlin 18675 | . . 3 ⊢ ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (𝐿‘𝐴) ∈ (Base‘𝑍) ∧ (𝐿‘𝐶) ∈ (Base‘𝑍)) → (𝑋‘((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
37 | 24, 28, 29, 36 | syl3anc 1371 | . 2 ⊢ (𝜑 → (𝑋‘((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
38 | 22, 37 | eqtrd 2772 | 1 ⊢ (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 · cmul 11111 ℕcn 12208 ℕ0cn0 12468 ℤcz 12554 Basecbs 17140 .rcmulr 17194 MndHom cmhm 18665 mulGrpcmgp 19981 Ringcrg 20049 CRingccrg 20050 RingHom crh 20240 ℂfldccnfld 20936 ℤringczring 21009 ℤRHomczrh 21040 ℤ/nℤczn 21043 DChrcdchr 26724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-ec 8701 df-qs 8705 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-seq 13963 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-0g 17383 df-imas 17450 df-qus 17451 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-nsg 18998 df-eqg 18999 df-ghm 19084 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-cring 20052 df-oppr 20142 df-rnghom 20243 df-subrg 20353 df-lmod 20465 df-lss 20535 df-lsp 20575 df-sra 20777 df-rgmod 20778 df-lidl 20779 df-rsp 20780 df-2idl 20849 df-cnfld 20937 df-zring 21010 df-zrh 21044 df-zn 21047 df-dchr 26725 |
This theorem is referenced by: dchrmusum2 26986 dchrvmasumlem1 26987 dchrvmasum2lem 26988 dchrisum0fmul 26998 |
Copyright terms: Public domain | W3C validator |