| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrzrhmul | Structured version Visualization version GIF version | ||
| Description: A Dirichlet character is completely multiplicative. (Contributed by Mario Carneiro, 4-May-2016.) |
| Ref | Expression |
|---|---|
| dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
| dchrelbas4.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
| dchrzrh1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| dchrzrh1.a | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| dchrzrh1.c | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| Ref | Expression |
|---|---|
| dchrzrhmul | ⊢ (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchrzrh1.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 2 | dchrmhm.g | . . . . . . . . . 10 ⊢ 𝐺 = (DChr‘𝑁) | |
| 3 | dchrmhm.b | . . . . . . . . . 10 ⊢ 𝐷 = (Base‘𝐺) | |
| 4 | 2, 3 | dchrrcl 27167 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| 5 | 1, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 6 | 5 | nnnn0d 12463 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 7 | dchrmhm.z | . . . . . . . 8 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 8 | 7 | zncrng 21469 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
| 9 | 6, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ CRing) |
| 10 | crngring 20148 | . . . . . 6 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ Ring) |
| 12 | dchrelbas4.l | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
| 13 | 12 | zrhrhm 21436 | . . . . 5 ⊢ (𝑍 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑍)) |
| 14 | 11, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (ℤring RingHom 𝑍)) |
| 15 | dchrzrh1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 16 | dchrzrh1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 17 | zringbas 21378 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
| 18 | zringmulr 21382 | . . . . 5 ⊢ · = (.r‘ℤring) | |
| 19 | eqid 2729 | . . . . 5 ⊢ (.r‘𝑍) = (.r‘𝑍) | |
| 20 | 17, 18, 19 | rhmmul 20389 | . . . 4 ⊢ ((𝐿 ∈ (ℤring RingHom 𝑍) ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐿‘(𝐴 · 𝐶)) = ((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) |
| 21 | 14, 15, 16, 20 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐿‘(𝐴 · 𝐶)) = ((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) |
| 22 | 21 | fveq2d 6830 | . 2 ⊢ (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = (𝑋‘((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶)))) |
| 23 | 2, 7, 3 | dchrmhm 27168 | . . . 4 ⊢ 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) |
| 24 | 23, 1 | sselid 3935 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
| 25 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
| 26 | 17, 25 | rhmf 20388 | . . . . 5 ⊢ (𝐿 ∈ (ℤring RingHom 𝑍) → 𝐿:ℤ⟶(Base‘𝑍)) |
| 27 | 14, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑍)) |
| 28 | 27, 15 | ffvelcdmd 7023 | . . 3 ⊢ (𝜑 → (𝐿‘𝐴) ∈ (Base‘𝑍)) |
| 29 | 27, 16 | ffvelcdmd 7023 | . . 3 ⊢ (𝜑 → (𝐿‘𝐶) ∈ (Base‘𝑍)) |
| 30 | eqid 2729 | . . . . 5 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
| 31 | 30, 25 | mgpbas 20048 | . . . 4 ⊢ (Base‘𝑍) = (Base‘(mulGrp‘𝑍)) |
| 32 | 30, 19 | mgpplusg 20047 | . . . 4 ⊢ (.r‘𝑍) = (+g‘(mulGrp‘𝑍)) |
| 33 | eqid 2729 | . . . . 5 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 34 | cnfldmul 21287 | . . . . 5 ⊢ · = (.r‘ℂfld) | |
| 35 | 33, 34 | mgpplusg 20047 | . . . 4 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
| 36 | 31, 32, 35 | mhmlin 18685 | . . 3 ⊢ ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (𝐿‘𝐴) ∈ (Base‘𝑍) ∧ (𝐿‘𝐶) ∈ (Base‘𝑍)) → (𝑋‘((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
| 37 | 24, 28, 29, 36 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑋‘((𝐿‘𝐴)(.r‘𝑍)(𝐿‘𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
| 38 | 22, 37 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑋‘(𝐿‘(𝐴 · 𝐶))) = ((𝑋‘(𝐿‘𝐴)) · (𝑋‘(𝐿‘𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 · cmul 11033 ℕcn 12146 ℕ0cn0 12402 ℤcz 12489 Basecbs 17138 .rcmulr 17180 MndHom cmhm 18673 mulGrpcmgp 20043 Ringcrg 20136 CRingccrg 20137 RingHom crh 20372 ℂfldccnfld 21279 ℤringczring 21371 ℤRHomczrh 21424 ℤ/nℤczn 21427 DChrcdchr 27159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-ec 8634 df-qs 8638 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-seq 13927 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-0g 17363 df-imas 17430 df-qus 17431 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-nsg 19021 df-eqg 19022 df-ghm 19110 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-rhm 20375 df-subrng 20449 df-subrg 20473 df-lmod 20783 df-lss 20853 df-lsp 20893 df-sra 21095 df-rgmod 21096 df-lidl 21133 df-rsp 21134 df-2idl 21175 df-cnfld 21280 df-zring 21372 df-zrh 21428 df-zn 21431 df-dchr 27160 |
| This theorem is referenced by: dchrmusum2 27421 dchrvmasumlem1 27422 dchrvmasum2lem 27423 dchrisum0fmul 27433 |
| Copyright terms: Public domain | W3C validator |