| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rhmmul | Structured version Visualization version GIF version | ||
| Description: A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| Ref | Expression |
|---|---|
| rhmmul.x | ⊢ 𝑋 = (Base‘𝑅) |
| rhmmul.m | ⊢ · = (.r‘𝑅) |
| rhmmul.n | ⊢ × = (.r‘𝑆) |
| Ref | Expression |
|---|---|
| rhmmul | ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | eqid 2735 | . . 3 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
| 3 | 1, 2 | rhmmhm 20439 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) |
| 4 | rhmmul.x | . . . 4 ⊢ 𝑋 = (Base‘𝑅) | |
| 5 | 1, 4 | mgpbas 20105 | . . 3 ⊢ 𝑋 = (Base‘(mulGrp‘𝑅)) |
| 6 | rhmmul.m | . . . 4 ⊢ · = (.r‘𝑅) | |
| 7 | 1, 6 | mgpplusg 20104 | . . 3 ⊢ · = (+g‘(mulGrp‘𝑅)) |
| 8 | rhmmul.n | . . . 4 ⊢ × = (.r‘𝑆) | |
| 9 | 2, 8 | mgpplusg 20104 | . . 3 ⊢ × = (+g‘(mulGrp‘𝑆)) |
| 10 | 5, 7, 9 | mhmlin 18771 | . 2 ⊢ ((𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
| 11 | 3, 10 | syl3an1 1163 | 1 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 .rcmulr 17272 MndHom cmhm 18759 mulGrpcmgp 20100 RingHom crh 20429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-0g 17455 df-mhm 18761 df-ghm 19196 df-mgp 20101 df-ur 20142 df-ring 20195 df-rhm 20432 |
| This theorem is referenced by: rhmdvdsr 20468 rhmopp 20469 rhmunitinv 20471 srngmul 20812 rhmpreimaidl 21238 rhmqusnsg 21246 domnchr 21493 znfld 21521 znidomb 21522 znunit 21524 znrrg 21526 evl1muld 22281 evl1scvarpw 22301 evls1fpws 22307 rhmcomulmpl 22320 rhmply1vsca 22326 mat2pmatmul 22669 mat2pmatlin 22673 cayhamlem4 22826 ply1rem 26123 fta1glem2 26126 fta1blem 26128 dchrzrhmul 27209 lgsdchr 27318 lgseisenlem3 27340 lgseisenlem4 27341 rhmdvd 33340 kerunit 33341 rhmquskerlem 33440 rhmimaidl 33447 rhmpreimaprmidl 33466 mdetpmtr1 33854 mdetpmtr12 33856 qqhghm 34019 qqhrhm 34020 fldhmf1 42103 rhmqusspan 42198 imacrhmcl 42537 rhmcomulpsr 42574 evlsmulval 42592 evlmulval 42599 |
| Copyright terms: Public domain | W3C validator |