MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmmul Structured version   Visualization version   GIF version

Theorem rhmmul 19192
Description: A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
rhmmul.x 𝑋 = (Base‘𝑅)
rhmmul.m · = (.r𝑅)
rhmmul.n × = (.r𝑆)
Assertion
Ref Expression
rhmmul ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)))

Proof of Theorem rhmmul
StepHypRef Expression
1 eqid 2772 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 eqid 2772 . . 3 (mulGrp‘𝑆) = (mulGrp‘𝑆)
31, 2rhmmhm 19187 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
4 rhmmul.x . . . 4 𝑋 = (Base‘𝑅)
51, 4mgpbas 18958 . . 3 𝑋 = (Base‘(mulGrp‘𝑅))
6 rhmmul.m . . . 4 · = (.r𝑅)
71, 6mgpplusg 18956 . . 3 · = (+g‘(mulGrp‘𝑅))
8 rhmmul.n . . . 4 × = (.r𝑆)
92, 8mgpplusg 18956 . . 3 × = (+g‘(mulGrp‘𝑆))
105, 7, 9mhmlin 17800 . 2 ((𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ∧ 𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)))
113, 10syl3an1 1143 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1068   = wceq 1507  wcel 2048  cfv 6182  (class class class)co 6970  Basecbs 16329  .rcmulr 16412   MndHom cmhm 17791  mulGrpcmgp 18952   RingHom crh 19177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-map 8200  df-en 8299  df-dom 8300  df-sdom 8301  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-plusg 16424  df-0g 16561  df-mhm 17793  df-ghm 18117  df-mgp 18953  df-ur 18965  df-ring 19012  df-rnghom 19180
This theorem is referenced by:  srngmul  19341  evl1muld  20198  evl1scvarpw  20218  domnchr  20371  znfld  20399  znidomb  20400  znunit  20402  znrrg  20404  mat2pmatmul  21033  mat2pmatlin  21037  cayhamlem4  21190  ply1rem  24450  fta1glem2  24453  fta1blem  24455  dchrzrhmul  25514  lgsdchr  25623  lgseisenlem3  25645  lgseisenlem4  25646  rhmdvdsr  30526  rhmopp  30527  rhmdvd  30529  rhmunitinv  30530  kerunit  30531  mdetpmtr1  30687  mdetpmtr12  30689  qqhghm  30830  qqhrhm  30831
  Copyright terms: Public domain W3C validator