| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rhmmul | Structured version Visualization version GIF version | ||
| Description: A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| Ref | Expression |
|---|---|
| rhmmul.x | ⊢ 𝑋 = (Base‘𝑅) |
| rhmmul.m | ⊢ · = (.r‘𝑅) |
| rhmmul.n | ⊢ × = (.r‘𝑆) |
| Ref | Expression |
|---|---|
| rhmmul | ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
| 3 | 1, 2 | rhmmhm 20364 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) |
| 4 | rhmmul.x | . . . 4 ⊢ 𝑋 = (Base‘𝑅) | |
| 5 | 1, 4 | mgpbas 20030 | . . 3 ⊢ 𝑋 = (Base‘(mulGrp‘𝑅)) |
| 6 | rhmmul.m | . . . 4 ⊢ · = (.r‘𝑅) | |
| 7 | 1, 6 | mgpplusg 20029 | . . 3 ⊢ · = (+g‘(mulGrp‘𝑅)) |
| 8 | rhmmul.n | . . . 4 ⊢ × = (.r‘𝑆) | |
| 9 | 2, 8 | mgpplusg 20029 | . . 3 ⊢ × = (+g‘(mulGrp‘𝑆)) |
| 10 | 5, 7, 9 | mhmlin 18667 | . 2 ⊢ ((𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
| 11 | 3, 10 | syl3an1 1163 | 1 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 .rcmulr 17162 MndHom cmhm 18655 mulGrpcmgp 20025 RingHom crh 20354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mhm 18657 df-ghm 19092 df-mgp 20026 df-ur 20067 df-ring 20120 df-rhm 20357 |
| This theorem is referenced by: rhmdvdsr 20393 rhmopp 20394 rhmunitinv 20396 srngmul 20737 rhmpreimaidl 21184 rhmqusnsg 21192 domnchr 21439 znfld 21467 znidomb 21468 znunit 21470 znrrg 21472 evl1muld 22228 evl1scvarpw 22248 evls1fpws 22254 rhmcomulmpl 22267 rhmply1vsca 22273 mat2pmatmul 22616 mat2pmatlin 22620 cayhamlem4 22773 ply1rem 26069 fta1glem2 26072 fta1blem 26074 dchrzrhmul 27155 lgsdchr 27264 lgseisenlem3 27286 lgseisenlem4 27287 fxpsubrg 33116 rhmdvd 33262 kerunit 33263 rhmquskerlem 33362 rhmimaidl 33369 rhmpreimaprmidl 33388 mdetpmtr1 33790 mdetpmtr12 33792 qqhghm 33955 qqhrhm 33956 fldhmf1 42063 rhmqusspan 42158 imacrhmcl 42487 rhmcomulpsr 42524 evlsmulval 42542 evlmulval 42549 |
| Copyright terms: Public domain | W3C validator |