![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ragcol | Structured version Visualization version GIF version |
Description: The right angle property is independent of the choice of point on one side. Theorem 8.3 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
Ref | Expression |
---|---|
israg.p | β’ π = (BaseβπΊ) |
israg.d | β’ β = (distβπΊ) |
israg.i | β’ πΌ = (ItvβπΊ) |
israg.l | β’ πΏ = (LineGβπΊ) |
israg.s | β’ π = (pInvGβπΊ) |
israg.g | β’ (π β πΊ β TarskiG) |
israg.a | β’ (π β π΄ β π) |
israg.b | β’ (π β π΅ β π) |
israg.c | β’ (π β πΆ β π) |
ragcol.d | β’ (π β π· β π) |
ragcol.1 | β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) |
ragcol.2 | β’ (π β π΄ β π΅) |
ragcol.3 | β’ (π β (π΄ β (π΅πΏπ·) β¨ π΅ = π·)) |
Ref | Expression |
---|---|
ragcol | β’ (π β β¨βπ·π΅πΆββ© β (βGβπΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | israg.p | . . 3 β’ π = (BaseβπΊ) | |
2 | israg.l | . . 3 β’ πΏ = (LineGβπΊ) | |
3 | israg.i | . . 3 β’ πΌ = (ItvβπΊ) | |
4 | israg.g | . . 3 β’ (π β πΊ β TarskiG) | |
5 | israg.b | . . 3 β’ (π β π΅ β π) | |
6 | israg.a | . . 3 β’ (π β π΄ β π) | |
7 | ragcol.d | . . 3 β’ (π β π· β π) | |
8 | eqid 2730 | . . 3 β’ (cgrGβπΊ) = (cgrGβπΊ) | |
9 | israg.c | . . 3 β’ (π β πΆ β π) | |
10 | israg.d | . . . 4 β’ β = (distβπΊ) | |
11 | israg.s | . . . 4 β’ π = (pInvGβπΊ) | |
12 | eqid 2730 | . . . 4 β’ (πβπ΅) = (πβπ΅) | |
13 | 1, 10, 3, 2, 11, 4, 5, 12, 9 | mircl 28177 | . . 3 β’ (π β ((πβπ΅)βπΆ) β π) |
14 | ragcol.2 | . . . 4 β’ (π β π΄ β π΅) | |
15 | 14 | necomd 2994 | . . 3 β’ (π β π΅ β π΄) |
16 | ragcol.3 | . . 3 β’ (π β (π΄ β (π΅πΏπ·) β¨ π΅ = π·)) | |
17 | 1, 10, 3, 2, 11, 4, 5, 12, 9 | mircgr 28173 | . . . 4 β’ (π β (π΅ β ((πβπ΅)βπΆ)) = (π΅ β πΆ)) |
18 | 17 | eqcomd 2736 | . . 3 β’ (π β (π΅ β πΆ) = (π΅ β ((πβπ΅)βπΆ))) |
19 | ragcol.1 | . . . 4 β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) | |
20 | 1, 10, 3, 2, 11, 4, 6, 5, 9 | israg 28213 | . . . 4 β’ (π β (β¨βπ΄π΅πΆββ© β (βGβπΊ) β (π΄ β πΆ) = (π΄ β ((πβπ΅)βπΆ)))) |
21 | 19, 20 | mpbid 231 | . . 3 β’ (π β (π΄ β πΆ) = (π΄ β ((πβπ΅)βπΆ))) |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 10, 15, 16, 18, 21 | lncgr 28085 | . 2 β’ (π β (π· β πΆ) = (π· β ((πβπ΅)βπΆ))) |
23 | 1, 10, 3, 2, 11, 4, 7, 5, 9 | israg 28213 | . 2 β’ (π β (β¨βπ·π΅πΆββ© β (βGβπΊ) β (π· β πΆ) = (π· β ((πβπ΅)βπΆ)))) |
24 | 22, 23 | mpbird 256 | 1 β’ (π β β¨βπ·π΅πΆββ© β (βGβπΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ wo 843 = wceq 1539 β wcel 2104 β wne 2938 βcfv 6544 (class class class)co 7413 β¨βcs3 14799 Basecbs 17150 distcds 17212 TarskiGcstrkg 27943 Itvcitv 27949 LineGclng 27950 cgrGccgrg 28026 pInvGcmir 28168 βGcrag 28209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-oadd 8474 df-er 8707 df-map 8826 df-pm 8827 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-dju 9900 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-3 12282 df-n0 12479 df-xnn0 12551 df-z 12565 df-uz 12829 df-fz 13491 df-fzo 13634 df-hash 14297 df-word 14471 df-concat 14527 df-s1 14552 df-s2 14805 df-s3 14806 df-trkgc 27964 df-trkgb 27965 df-trkgcb 27966 df-trkg 27969 df-cgrg 28027 df-mir 28169 df-rag 28210 |
This theorem is referenced by: ragflat 28220 ragflat3 28222 ragperp 28233 footexALT 28234 footexlem2 28236 colperpexlem1 28246 mideulem2 28250 opphllem 28251 |
Copyright terms: Public domain | W3C validator |