Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ragcol | Structured version Visualization version GIF version |
Description: The right angle property is independent of the choice of point on one side. Theorem 8.3 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
Ref | Expression |
---|---|
israg.p | ⊢ 𝑃 = (Base‘𝐺) |
israg.d | ⊢ − = (dist‘𝐺) |
israg.i | ⊢ 𝐼 = (Itv‘𝐺) |
israg.l | ⊢ 𝐿 = (LineG‘𝐺) |
israg.s | ⊢ 𝑆 = (pInvG‘𝐺) |
israg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
israg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
israg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
israg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
ragcol.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
ragcol.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
ragcol.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
ragcol.3 | ⊢ (𝜑 → (𝐴 ∈ (𝐵𝐿𝐷) ∨ 𝐵 = 𝐷)) |
Ref | Expression |
---|---|
ragcol | ⊢ (𝜑 → 〈“𝐷𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | israg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | israg.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
3 | israg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | israg.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | israg.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
6 | israg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | ragcol.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
8 | eqid 2737 | . . 3 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
9 | israg.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
10 | israg.d | . . . 4 ⊢ − = (dist‘𝐺) | |
11 | israg.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
12 | eqid 2737 | . . . 4 ⊢ (𝑆‘𝐵) = (𝑆‘𝐵) | |
13 | 1, 10, 3, 2, 11, 4, 5, 12, 9 | mircl 27311 | . . 3 ⊢ (𝜑 → ((𝑆‘𝐵)‘𝐶) ∈ 𝑃) |
14 | ragcol.2 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
15 | 14 | necomd 2997 | . . 3 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
16 | ragcol.3 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (𝐵𝐿𝐷) ∨ 𝐵 = 𝐷)) | |
17 | 1, 10, 3, 2, 11, 4, 5, 12, 9 | mircgr 27307 | . . . 4 ⊢ (𝜑 → (𝐵 − ((𝑆‘𝐵)‘𝐶)) = (𝐵 − 𝐶)) |
18 | 17 | eqcomd 2743 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐵 − ((𝑆‘𝐵)‘𝐶))) |
19 | ragcol.1 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | |
20 | 1, 10, 3, 2, 11, 4, 6, 5, 9 | israg 27347 | . . . 4 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶)))) |
21 | 19, 20 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶))) |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 10, 15, 16, 18, 21 | lncgr 27219 | . 2 ⊢ (𝜑 → (𝐷 − 𝐶) = (𝐷 − ((𝑆‘𝐵)‘𝐶))) |
23 | 1, 10, 3, 2, 11, 4, 7, 5, 9 | israg 27347 | . 2 ⊢ (𝜑 → (〈“𝐷𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (𝐷 − 𝐶) = (𝐷 − ((𝑆‘𝐵)‘𝐶)))) |
24 | 22, 23 | mpbird 257 | 1 ⊢ (𝜑 → 〈“𝐷𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ‘cfv 6484 (class class class)co 7342 〈“cs3 14655 Basecbs 17010 distcds 17069 TarskiGcstrkg 27077 Itvcitv 27083 LineGclng 27084 cgrGccgrg 27160 pInvGcmir 27302 ∟Gcrag 27343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-tp 4583 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-oadd 8376 df-er 8574 df-map 8693 df-pm 8694 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-dju 9763 df-card 9801 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-3 12143 df-n0 12340 df-xnn0 12412 df-z 12426 df-uz 12689 df-fz 13346 df-fzo 13489 df-hash 14151 df-word 14323 df-concat 14379 df-s1 14404 df-s2 14661 df-s3 14662 df-trkgc 27098 df-trkgb 27099 df-trkgcb 27100 df-trkg 27103 df-cgrg 27161 df-mir 27303 df-rag 27344 |
This theorem is referenced by: ragflat 27354 ragflat3 27356 ragperp 27367 footexALT 27368 footexlem2 27370 colperpexlem1 27380 mideulem2 27384 opphllem 27385 |
Copyright terms: Public domain | W3C validator |