![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ragcol | Structured version Visualization version GIF version |
Description: The right angle property is independent of the choice of point on one side. Theorem 8.3 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
Ref | Expression |
---|---|
israg.p | ⊢ 𝑃 = (Base‘𝐺) |
israg.d | ⊢ − = (dist‘𝐺) |
israg.i | ⊢ 𝐼 = (Itv‘𝐺) |
israg.l | ⊢ 𝐿 = (LineG‘𝐺) |
israg.s | ⊢ 𝑆 = (pInvG‘𝐺) |
israg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
israg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
israg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
israg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
ragcol.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
ragcol.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
ragcol.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
ragcol.3 | ⊢ (𝜑 → (𝐴 ∈ (𝐵𝐿𝐷) ∨ 𝐵 = 𝐷)) |
Ref | Expression |
---|---|
ragcol | ⊢ (𝜑 → 〈“𝐷𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | israg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | israg.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
3 | israg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | israg.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | israg.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
6 | israg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | ragcol.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
8 | eqid 2735 | . . 3 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
9 | israg.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
10 | israg.d | . . . 4 ⊢ − = (dist‘𝐺) | |
11 | israg.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
12 | eqid 2735 | . . . 4 ⊢ (𝑆‘𝐵) = (𝑆‘𝐵) | |
13 | 1, 10, 3, 2, 11, 4, 5, 12, 9 | mircl 28684 | . . 3 ⊢ (𝜑 → ((𝑆‘𝐵)‘𝐶) ∈ 𝑃) |
14 | ragcol.2 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
15 | 14 | necomd 2994 | . . 3 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
16 | ragcol.3 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (𝐵𝐿𝐷) ∨ 𝐵 = 𝐷)) | |
17 | 1, 10, 3, 2, 11, 4, 5, 12, 9 | mircgr 28680 | . . . 4 ⊢ (𝜑 → (𝐵 − ((𝑆‘𝐵)‘𝐶)) = (𝐵 − 𝐶)) |
18 | 17 | eqcomd 2741 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐵 − ((𝑆‘𝐵)‘𝐶))) |
19 | ragcol.1 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | |
20 | 1, 10, 3, 2, 11, 4, 6, 5, 9 | israg 28720 | . . . 4 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶)))) |
21 | 19, 20 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶))) |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 10, 15, 16, 18, 21 | lncgr 28592 | . 2 ⊢ (𝜑 → (𝐷 − 𝐶) = (𝐷 − ((𝑆‘𝐵)‘𝐶))) |
23 | 1, 10, 3, 2, 11, 4, 7, 5, 9 | israg 28720 | . 2 ⊢ (𝜑 → (〈“𝐷𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (𝐷 − 𝐶) = (𝐷 − ((𝑆‘𝐵)‘𝐶)))) |
24 | 22, 23 | mpbird 257 | 1 ⊢ (𝜑 → 〈“𝐷𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ‘cfv 6563 (class class class)co 7431 〈“cs3 14878 Basecbs 17245 distcds 17307 TarskiGcstrkg 28450 Itvcitv 28456 LineGclng 28457 cgrGccgrg 28533 pInvGcmir 28675 ∟Gcrag 28716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-concat 14606 df-s1 14631 df-s2 14884 df-s3 14885 df-trkgc 28471 df-trkgb 28472 df-trkgcb 28473 df-trkg 28476 df-cgrg 28534 df-mir 28676 df-rag 28717 |
This theorem is referenced by: ragflat 28727 ragflat3 28729 ragperp 28740 footexALT 28741 footexlem2 28743 colperpexlem1 28753 mideulem2 28757 opphllem 28758 |
Copyright terms: Public domain | W3C validator |