Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndpsuppfi Structured version   Visualization version   GIF version

Theorem mndpsuppfi 45711
Description: The support of a mapping of a scalar multiplication with a function of scalars is finite if the support of the function of scalars is finite. (Contributed by AV, 5-Apr-2019.)
Hypothesis
Ref Expression
mndpsuppfi.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
mndpsuppfi (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ ((𝐴 supp (0g𝑀)) ∈ Fin ∧ (𝐵 supp (0g𝑀)) ∈ Fin)) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ∈ Fin)

Proof of Theorem mndpsuppfi
StepHypRef Expression
1 unfi 8955 . . 3 (((𝐴 supp (0g𝑀)) ∈ Fin ∧ (𝐵 supp (0g𝑀)) ∈ Fin) → ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))) ∈ Fin)
213ad2ant3 1134 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ ((𝐴 supp (0g𝑀)) ∈ Fin ∧ (𝐵 supp (0g𝑀)) ∈ Fin)) → ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))) ∈ Fin)
3 mndpsuppfi.r . . . 4 𝑅 = (Base‘𝑀)
43mndpsuppss 45707 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ⊆ ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))))
543adant3 1131 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ ((𝐴 supp (0g𝑀)) ∈ Fin ∧ (𝐵 supp (0g𝑀)) ∈ Fin)) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ⊆ ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))))
6 ssfi 8956 . 2 ((((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))) ∈ Fin ∧ ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ⊆ ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀)))) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ∈ Fin)
72, 5, 6syl2anc 584 1 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ ((𝐴 supp (0g𝑀)) ∈ Fin ∧ (𝐵 supp (0g𝑀)) ∈ Fin)) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cun 3885  wss 3887  cfv 6433  (class class class)co 7275  f cof 7531   supp csupp 7977  m cmap 8615  Fincfn 8733  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Mndcmnd 18385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-1o 8297  df-map 8617  df-en 8734  df-fin 8737  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386
This theorem is referenced by:  mndpfsupp  45712
  Copyright terms: Public domain W3C validator