![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndpsuppfi | Structured version Visualization version GIF version |
Description: The support of a mapping of a scalar multiplication with a function of scalars is finite if the support of the function of scalars is finite. (Contributed by AV, 5-Apr-2019.) |
Ref | Expression |
---|---|
mndpsuppfi.r | ⊢ 𝑅 = (Base‘𝑀) |
Ref | Expression |
---|---|
mndpsuppfi | ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ ((𝐴 supp (0g‘𝑀)) ∈ Fin ∧ (𝐵 supp (0g‘𝑀)) ∈ Fin)) → ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unfi 9122 | . . 3 ⊢ (((𝐴 supp (0g‘𝑀)) ∈ Fin ∧ (𝐵 supp (0g‘𝑀)) ∈ Fin) → ((𝐴 supp (0g‘𝑀)) ∪ (𝐵 supp (0g‘𝑀))) ∈ Fin) | |
2 | 1 | 3ad2ant3 1136 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ ((𝐴 supp (0g‘𝑀)) ∈ Fin ∧ (𝐵 supp (0g‘𝑀)) ∈ Fin)) → ((𝐴 supp (0g‘𝑀)) ∪ (𝐵 supp (0g‘𝑀))) ∈ Fin) |
3 | mndpsuppfi.r | . . . 4 ⊢ 𝑅 = (Base‘𝑀) | |
4 | 3 | mndpsuppss 46537 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ⊆ ((𝐴 supp (0g‘𝑀)) ∪ (𝐵 supp (0g‘𝑀)))) |
5 | 4 | 3adant3 1133 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ ((𝐴 supp (0g‘𝑀)) ∈ Fin ∧ (𝐵 supp (0g‘𝑀)) ∈ Fin)) → ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ⊆ ((𝐴 supp (0g‘𝑀)) ∪ (𝐵 supp (0g‘𝑀)))) |
6 | ssfi 9123 | . 2 ⊢ ((((𝐴 supp (0g‘𝑀)) ∪ (𝐵 supp (0g‘𝑀))) ∈ Fin ∧ ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ⊆ ((𝐴 supp (0g‘𝑀)) ∪ (𝐵 supp (0g‘𝑀)))) → ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin) | |
7 | 2, 5, 6 | syl2anc 585 | 1 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ ((𝐴 supp (0g‘𝑀)) ∈ Fin ∧ (𝐵 supp (0g‘𝑀)) ∈ Fin)) → ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∪ cun 3912 ⊆ wss 3914 ‘cfv 6500 (class class class)co 7361 ∘f cof 7619 supp csupp 8096 ↑m cmap 8771 Fincfn 8889 Basecbs 17091 +gcplusg 17141 0gc0g 17329 Mndcmnd 18564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-of 7621 df-om 7807 df-1st 7925 df-2nd 7926 df-supp 8097 df-1o 8416 df-map 8773 df-en 8890 df-fin 8893 df-0g 17331 df-mgm 18505 df-sgrp 18554 df-mnd 18565 |
This theorem is referenced by: mndpfsupp 46542 |
Copyright terms: Public domain | W3C validator |