| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndpsuppfi | Structured version Visualization version GIF version | ||
| Description: The support of a mapping of a scalar multiplication with a function of scalars is finite if the support of the function of scalars is finite. (Contributed by AV, 5-Apr-2019.) |
| Ref | Expression |
|---|---|
| mndpsuppfi.r | ⊢ 𝑅 = (Base‘𝑀) |
| Ref | Expression |
|---|---|
| mndpsuppfi | ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ ((𝐴 supp (0g‘𝑀)) ∈ Fin ∧ (𝐵 supp (0g‘𝑀)) ∈ Fin)) → ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unfi 9090 | . . 3 ⊢ (((𝐴 supp (0g‘𝑀)) ∈ Fin ∧ (𝐵 supp (0g‘𝑀)) ∈ Fin) → ((𝐴 supp (0g‘𝑀)) ∪ (𝐵 supp (0g‘𝑀))) ∈ Fin) | |
| 2 | 1 | 3ad2ant3 1135 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ ((𝐴 supp (0g‘𝑀)) ∈ Fin ∧ (𝐵 supp (0g‘𝑀)) ∈ Fin)) → ((𝐴 supp (0g‘𝑀)) ∪ (𝐵 supp (0g‘𝑀))) ∈ Fin) |
| 3 | mndpsuppfi.r | . . . 4 ⊢ 𝑅 = (Base‘𝑀) | |
| 4 | 3 | mndpsuppss 18683 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ⊆ ((𝐴 supp (0g‘𝑀)) ∪ (𝐵 supp (0g‘𝑀)))) |
| 5 | 4 | 3adant3 1132 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ ((𝐴 supp (0g‘𝑀)) ∈ Fin ∧ (𝐵 supp (0g‘𝑀)) ∈ Fin)) → ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ⊆ ((𝐴 supp (0g‘𝑀)) ∪ (𝐵 supp (0g‘𝑀)))) |
| 6 | ssfi 9092 | . 2 ⊢ ((((𝐴 supp (0g‘𝑀)) ∪ (𝐵 supp (0g‘𝑀))) ∈ Fin ∧ ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ⊆ ((𝐴 supp (0g‘𝑀)) ∪ (𝐵 supp (0g‘𝑀)))) → ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin) | |
| 7 | 2, 5, 6 | syl2anc 584 | 1 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ ((𝐴 supp (0g‘𝑀)) ∈ Fin ∧ (𝐵 supp (0g‘𝑀)) ∈ Fin)) → ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∪ cun 3897 ⊆ wss 3899 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 supp csupp 8099 ↑m cmap 8759 Fincfn 8878 Basecbs 17130 +gcplusg 17171 0gc0g 17353 Mndcmnd 18652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-1o 8394 df-map 8761 df-en 8879 df-fin 8882 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 |
| This theorem is referenced by: mndpfsupp 18685 |
| Copyright terms: Public domain | W3C validator |