MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndpsuppfi Structured version   Visualization version   GIF version

Theorem mndpsuppfi 18753
Description: The support of a mapping of a scalar multiplication with a function of scalars is finite if the support of the function of scalars is finite. (Contributed by AV, 5-Apr-2019.)
Hypothesis
Ref Expression
mndpsuppfi.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
mndpsuppfi (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ ((𝐴 supp (0g𝑀)) ∈ Fin ∧ (𝐵 supp (0g𝑀)) ∈ Fin)) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ∈ Fin)

Proof of Theorem mndpsuppfi
StepHypRef Expression
1 unfi 9194 . . 3 (((𝐴 supp (0g𝑀)) ∈ Fin ∧ (𝐵 supp (0g𝑀)) ∈ Fin) → ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))) ∈ Fin)
213ad2ant3 1135 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ ((𝐴 supp (0g𝑀)) ∈ Fin ∧ (𝐵 supp (0g𝑀)) ∈ Fin)) → ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))) ∈ Fin)
3 mndpsuppfi.r . . . 4 𝑅 = (Base‘𝑀)
43mndpsuppss 18752 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ⊆ ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))))
543adant3 1132 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ ((𝐴 supp (0g𝑀)) ∈ Fin ∧ (𝐵 supp (0g𝑀)) ∈ Fin)) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ⊆ ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))))
6 ssfi 9196 . 2 ((((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))) ∈ Fin ∧ ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ⊆ ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀)))) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ∈ Fin)
72, 5, 6syl2anc 584 1 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ ((𝐴 supp (0g𝑀)) ∈ Fin ∧ (𝐵 supp (0g𝑀)) ∈ Fin)) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cun 3931  wss 3933  cfv 6542  (class class class)co 7414  f cof 7678   supp csupp 8168  m cmap 8849  Fincfn 8968  Basecbs 17230  +gcplusg 17277  0gc0g 17460  Mndcmnd 18721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7871  df-1st 7997  df-2nd 7998  df-supp 8169  df-1o 8489  df-map 8851  df-en 8969  df-fin 8972  df-0g 17462  df-mgm 18627  df-sgrp 18706  df-mnd 18722
This theorem is referenced by:  mndpfsupp  18754
  Copyright terms: Public domain W3C validator