MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxrre Structured version   Visualization version   GIF version

Theorem infxrre 12891
Description: The real and extended real infima match when the real infimum exists. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 5-Sep-2020.)
Assertion
Ref Expression
infxrre ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ, < ))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem infxrre
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp1 1138 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → 𝐴 ⊆ ℝ)
2 ressxr 10842 . . . 4 ℝ ⊆ ℝ*
31, 2sstrdi 3899 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → 𝐴 ⊆ ℝ*)
4 infxrcl 12888 . . 3 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
53, 4syl 17 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
6 infrecl 11779 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) ∈ ℝ)
76rexrd 10848 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) ∈ ℝ*)
85xrleidd 12707 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ))
9 infxrgelb 12890 . . . . 5 ((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) ∈ ℝ*) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ*, < ) ≤ 𝑥))
103, 5, 9syl2anc 587 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ*, < ) ≤ 𝑥))
11 simp2 1139 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → 𝐴 ≠ ∅)
12 n0 4247 . . . . . . 7 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
1311, 12sylib 221 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑧 𝑧𝐴)
145adantr 484 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝑧𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
151sselda 3887 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
16 mnfxr 10855 . . . . . . . . . 10 -∞ ∈ ℝ*
1716a1i 11 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → -∞ ∈ ℝ*)
186mnfltd 12681 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → -∞ < inf(𝐴, ℝ, < ))
196leidd 11363 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ, < ))
20 infregelb 11781 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ inf(𝐴, ℝ, < ) ∈ ℝ) → (inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ, < ) ≤ 𝑥))
216, 20mpdan 687 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ, < ) ≤ 𝑥))
22 infxrgelb 12890 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ, < ) ∈ ℝ*) → (inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ, < ) ≤ 𝑥))
233, 7, 22syl2anc 587 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ, < ) ≤ 𝑥))
2421, 23bitr4d 285 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ, < ) ↔ inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ*, < )))
2519, 24mpbid 235 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ*, < ))
2617, 7, 5, 18, 25xrltletrd 12716 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → -∞ < inf(𝐴, ℝ*, < ))
2726adantr 484 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝑧𝐴) → -∞ < inf(𝐴, ℝ*, < ))
28 infxrlb 12889 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑧𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑧)
293, 28sylan 583 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝑧𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑧)
30 xrre 12724 . . . . . . 7 (((inf(𝐴, ℝ*, < ) ∈ ℝ*𝑧 ∈ ℝ) ∧ (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) ≤ 𝑧)) → inf(𝐴, ℝ*, < ) ∈ ℝ)
3114, 15, 27, 29, 30syl22anc 839 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝑧𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ)
3213, 31exlimddv 1943 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) ∈ ℝ)
33 infregelb 11781 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ*, < ) ≤ 𝑥))
3432, 33mpdan 687 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ*, < ) ≤ 𝑥))
3510, 34bitr4d 285 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ) ↔ inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ, < )))
368, 35mpbid 235 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ, < ))
375, 7, 36, 25xrletrid 12710 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2112  wne 2932  wral 3051  wrex 3052  wss 3853  c0 4223   class class class wbr 5039  infcinf 9035  cr 10693  -∞cmnf 10830  *cxr 10831   < clt 10832  cle 10833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030
This theorem is referenced by:  mbflimsup  24517  infxrrefi  42535  supminfxr  42620  climinf2lem  42865  limsupvaluz2  42897
  Copyright terms: Public domain W3C validator