MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxrre Structured version   Visualization version   GIF version

Theorem infxrre 12368
Description: The real and extended real infima match when the real infimum exists. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 5-Sep-2020.)
Assertion
Ref Expression
infxrre ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ, < ))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem infxrre
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp1 1166 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → 𝐴 ⊆ ℝ)
2 ressxr 10337 . . . 4 ℝ ⊆ ℝ*
31, 2syl6ss 3773 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → 𝐴 ⊆ ℝ*)
4 infxrcl 12365 . . 3 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
53, 4syl 17 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
6 infrecl 11259 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) ∈ ℝ)
76rexrd 10343 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) ∈ ℝ*)
85xrleidd 12185 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ))
9 infxrgelb 12367 . . . . 5 ((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) ∈ ℝ*) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ*, < ) ≤ 𝑥))
103, 5, 9syl2anc 579 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ*, < ) ≤ 𝑥))
11 simp2 1167 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → 𝐴 ≠ ∅)
12 n0 4095 . . . . . . 7 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
1311, 12sylib 209 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑧 𝑧𝐴)
145adantr 472 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝑧𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
151sselda 3761 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
16 mnfxr 10350 . . . . . . . . . 10 -∞ ∈ ℝ*
1716a1i 11 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → -∞ ∈ ℝ*)
186mnfltd 12158 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → -∞ < inf(𝐴, ℝ, < ))
196leidd 10848 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ, < ))
20 infregelb 11261 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ inf(𝐴, ℝ, < ) ∈ ℝ) → (inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ, < ) ≤ 𝑥))
216, 20mpdan 678 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ, < ) ≤ 𝑥))
22 infxrgelb 12367 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ, < ) ∈ ℝ*) → (inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ, < ) ≤ 𝑥))
233, 7, 22syl2anc 579 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ, < ) ≤ 𝑥))
2421, 23bitr4d 273 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ, < ) ↔ inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ*, < )))
2519, 24mpbid 223 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ*, < ))
2617, 7, 5, 18, 25xrltletrd 12194 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → -∞ < inf(𝐴, ℝ*, < ))
2726adantr 472 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝑧𝐴) → -∞ < inf(𝐴, ℝ*, < ))
28 infxrlb 12366 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑧𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑧)
293, 28sylan 575 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝑧𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑧)
30 xrre 12202 . . . . . . 7 (((inf(𝐴, ℝ*, < ) ∈ ℝ*𝑧 ∈ ℝ) ∧ (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) ≤ 𝑧)) → inf(𝐴, ℝ*, < ) ∈ ℝ)
3114, 15, 27, 29, 30syl22anc 867 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝑧𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ)
3213, 31exlimddv 2030 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) ∈ ℝ)
33 infregelb 11261 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ*, < ) ≤ 𝑥))
3432, 33mpdan 678 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ*, < ) ≤ 𝑥))
3510, 34bitr4d 273 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ) ↔ inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ, < )))
368, 35mpbid 223 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ, < ))
375, 7, 36, 25xrletrid 12188 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wex 1874  wcel 2155  wne 2937  wral 3055  wrex 3056  wss 3732  c0 4079   class class class wbr 4809  infcinf 8554  cr 10188  -∞cmnf 10326  *cxr 10327   < clt 10328  cle 10329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523
This theorem is referenced by:  mbflimsup  23724  infxrrefi  40239  supminfxr  40331  climinf2lem  40576  limsupvaluz2  40608
  Copyright terms: Public domain W3C validator