MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxrre Structured version   Visualization version   GIF version

Theorem infxrre 12723
Description: The real and extended real infima match when the real infimum exists. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 5-Sep-2020.)
Assertion
Ref Expression
infxrre ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ, < ))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem infxrre
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp1 1132 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → 𝐴 ⊆ ℝ)
2 ressxr 10679 . . . 4 ℝ ⊆ ℝ*
31, 2sstrdi 3979 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → 𝐴 ⊆ ℝ*)
4 infxrcl 12720 . . 3 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
53, 4syl 17 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
6 infrecl 11617 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) ∈ ℝ)
76rexrd 10685 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) ∈ ℝ*)
85xrleidd 12539 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ))
9 infxrgelb 12722 . . . . 5 ((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) ∈ ℝ*) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ*, < ) ≤ 𝑥))
103, 5, 9syl2anc 586 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ*, < ) ≤ 𝑥))
11 simp2 1133 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → 𝐴 ≠ ∅)
12 n0 4310 . . . . . . 7 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
1311, 12sylib 220 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑧 𝑧𝐴)
145adantr 483 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝑧𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
151sselda 3967 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
16 mnfxr 10692 . . . . . . . . . 10 -∞ ∈ ℝ*
1716a1i 11 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → -∞ ∈ ℝ*)
186mnfltd 12513 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → -∞ < inf(𝐴, ℝ, < ))
196leidd 11200 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ, < ))
20 infregelb 11619 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ inf(𝐴, ℝ, < ) ∈ ℝ) → (inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ, < ) ≤ 𝑥))
216, 20mpdan 685 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ, < ) ≤ 𝑥))
22 infxrgelb 12722 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ, < ) ∈ ℝ*) → (inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ, < ) ≤ 𝑥))
233, 7, 22syl2anc 586 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ, < ) ≤ 𝑥))
2421, 23bitr4d 284 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ, < ) ↔ inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ*, < )))
2519, 24mpbid 234 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ*, < ))
2617, 7, 5, 18, 25xrltletrd 12548 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → -∞ < inf(𝐴, ℝ*, < ))
2726adantr 483 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝑧𝐴) → -∞ < inf(𝐴, ℝ*, < ))
28 infxrlb 12721 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑧𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑧)
293, 28sylan 582 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝑧𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑧)
30 xrre 12556 . . . . . . 7 (((inf(𝐴, ℝ*, < ) ∈ ℝ*𝑧 ∈ ℝ) ∧ (-∞ < inf(𝐴, ℝ*, < ) ∧ inf(𝐴, ℝ*, < ) ≤ 𝑧)) → inf(𝐴, ℝ*, < ) ∈ ℝ)
3114, 15, 27, 29, 30syl22anc 836 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝑧𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ)
3213, 31exlimddv 1932 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) ∈ ℝ)
33 infregelb 11619 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ inf(𝐴, ℝ*, < ) ∈ ℝ) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ*, < ) ≤ 𝑥))
3432, 33mpdan 685 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 inf(𝐴, ℝ*, < ) ≤ 𝑥))
3510, 34bitr4d 284 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ) ↔ inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ, < )))
368, 35mpbid 234 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ, < ))
375, 7, 36, 25xrletrid 12542 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  wss 3936  c0 4291   class class class wbr 5059  infcinf 8899  cr 10530  -∞cmnf 10667  *cxr 10668   < clt 10669  cle 10670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867
This theorem is referenced by:  mbflimsup  24261  infxrrefi  41644  supminfxr  41732  climinf2lem  41979  limsupvaluz2  42011
  Copyright terms: Public domain W3C validator