Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → 𝐴 ⊆ ℝ) |
2 | | ressxr 10950 |
. . . 4
⊢ ℝ
⊆ ℝ* |
3 | 1, 2 | sstrdi 3929 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → 𝐴 ⊆
ℝ*) |
4 | | infxrcl 12996 |
. . 3
⊢ (𝐴 ⊆ ℝ*
→ inf(𝐴,
ℝ*, < ) ∈ ℝ*) |
5 | 3, 4 | syl 17 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ*, < ) ∈
ℝ*) |
6 | | infrecl 11887 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ, < ) ∈
ℝ) |
7 | 6 | rexrd 10956 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ, < ) ∈
ℝ*) |
8 | 5 | xrleidd 12815 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ*, <
)) |
9 | | infxrgelb 12998 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ*
∧ inf(𝐴,
ℝ*, < ) ∈ ℝ*) → (inf(𝐴, ℝ*, < )
≤ inf(𝐴,
ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 inf(𝐴, ℝ*, < ) ≤ 𝑥)) |
10 | 3, 5, 9 | syl2anc 583 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ*, < )
↔ ∀𝑥 ∈
𝐴 inf(𝐴, ℝ*, < ) ≤ 𝑥)) |
11 | | simp2 1135 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → 𝐴 ≠ ∅) |
12 | | n0 4277 |
. . . . . . 7
⊢ (𝐴 ≠ ∅ ↔
∃𝑧 𝑧 ∈ 𝐴) |
13 | 11, 12 | sylib 217 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → ∃𝑧 𝑧 ∈ 𝐴) |
14 | 5 | adantr 480 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝑧 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ∈
ℝ*) |
15 | 1 | sselda 3917 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ) |
16 | | mnfxr 10963 |
. . . . . . . . . 10
⊢ -∞
∈ ℝ* |
17 | 16 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → -∞ ∈
ℝ*) |
18 | 6 | mnfltd 12789 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → -∞ < inf(𝐴, ℝ, < )) |
19 | 6 | leidd 11471 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ, < )) |
20 | | infregelb 11889 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ inf(𝐴, ℝ, < ) ∈ ℝ) →
(inf(𝐴, ℝ, < )
≤ inf(𝐴, ℝ, < )
↔ ∀𝑥 ∈
𝐴 inf(𝐴, ℝ, < ) ≤ 𝑥)) |
21 | 6, 20 | mpdan 683 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → (inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑥 ∈ 𝐴 inf(𝐴, ℝ, < ) ≤ 𝑥)) |
22 | | infxrgelb 12998 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℝ*
∧ inf(𝐴, ℝ, <
) ∈ ℝ*) → (inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ*, < ) ↔
∀𝑥 ∈ 𝐴 inf(𝐴, ℝ, < ) ≤ 𝑥)) |
23 | 3, 7, 22 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → (inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ*, < ) ↔
∀𝑥 ∈ 𝐴 inf(𝐴, ℝ, < ) ≤ 𝑥)) |
24 | 21, 23 | bitr4d 281 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → (inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ, < ) ↔ inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ*, <
))) |
25 | 19, 24 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ, < ) ≤ inf(𝐴, ℝ*, <
)) |
26 | 17, 7, 5, 18, 25 | xrltletrd 12824 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → -∞ < inf(𝐴, ℝ*, <
)) |
27 | 26 | adantr 480 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝑧 ∈ 𝐴) → -∞ < inf(𝐴, ℝ*, <
)) |
28 | | infxrlb 12997 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑧 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑧) |
29 | 3, 28 | sylan 579 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝑧 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑧) |
30 | | xrre 12832 |
. . . . . . 7
⊢
(((inf(𝐴,
ℝ*, < ) ∈ ℝ* ∧ 𝑧 ∈ ℝ) ∧ (-∞ <
inf(𝐴, ℝ*,
< ) ∧ inf(𝐴,
ℝ*, < ) ≤ 𝑧)) → inf(𝐴, ℝ*, < ) ∈
ℝ) |
31 | 14, 15, 27, 29, 30 | syl22anc 835 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝑧 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ∈
ℝ) |
32 | 13, 31 | exlimddv 1939 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ*, < ) ∈
ℝ) |
33 | | infregelb 11889 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ inf(𝐴, ℝ*, < ) ∈
ℝ) → (inf(𝐴,
ℝ*, < ) ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑥 ∈ 𝐴 inf(𝐴, ℝ*, < ) ≤ 𝑥)) |
34 | 32, 33 | mpdan 683 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ, < ) ↔
∀𝑥 ∈ 𝐴 inf(𝐴, ℝ*, < ) ≤ 𝑥)) |
35 | 10, 34 | bitr4d 281 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ*, < )
↔ inf(𝐴,
ℝ*, < ) ≤ inf(𝐴, ℝ, < ))) |
36 | 8, 35 | mpbid 231 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ*, < ) ≤ inf(𝐴, ℝ, <
)) |
37 | 5, 7, 36, 25 | xrletrid 12818 |
1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ, <
)) |