Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem88 Structured version   Visualization version   GIF version

Theorem fourierdlem88 41072
Description: Given a piecewise continuous function 𝐹, a continuous function 𝐾 and a continuous function 𝑆, the function 𝐺 is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem88.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem88.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem88.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem88.y (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem88.w (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem88.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem88.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem88.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem88.n (𝜑𝑁 ∈ ℝ)
fourierdlem88.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
fourierdlem88.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem88.m (𝜑𝑀 ∈ ℕ)
fourierdlem88.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem88.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem88.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem88.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem88.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem88.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem88.i 𝐼 = (ℝ D 𝐹)
fourierdlem88.ifn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
fourierdlem88.c (𝜑𝐶 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem88.d (𝜑𝐷 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
Assertion
Ref Expression
fourierdlem88 (𝜑𝐺 ∈ 𝐿1)
Distinct variable groups:   𝐶,𝑠   𝐷,𝑠   𝐹,𝑠   𝑖,𝐺,𝑠   𝐻,𝑠   𝐾,𝑠   𝐿,𝑠   𝑖,𝑀,𝑚,𝑝   𝑀,𝑠   𝑁,𝑠   𝑄,𝑖,𝑝   𝑄,𝑠   𝑅,𝑠   𝑆,𝑠   𝑖,𝑉,𝑝   𝑉,𝑠   𝑊,𝑠   𝑖,𝑋,𝑚,𝑝   𝑋,𝑠   𝑌,𝑠   𝜑,𝑖,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐶(𝑖,𝑚,𝑝)   𝐷(𝑖,𝑚,𝑝)   𝑃(𝑖,𝑚,𝑠,𝑝)   𝑄(𝑚)   𝑅(𝑖,𝑚,𝑝)   𝑆(𝑖,𝑚,𝑝)   𝑈(𝑖,𝑚,𝑠,𝑝)   𝐹(𝑖,𝑚,𝑝)   𝐺(𝑚,𝑝)   𝐻(𝑖,𝑚,𝑝)   𝐼(𝑖,𝑚,𝑠,𝑝)   𝐾(𝑖,𝑚,𝑝)   𝐿(𝑖,𝑚,𝑝)   𝑁(𝑖,𝑚,𝑝)   𝑂(𝑖,𝑚,𝑠,𝑝)   𝑉(𝑚)   𝑊(𝑖,𝑚,𝑝)   𝑌(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem88
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem88.o . 2 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
2 fourierdlem88.m . 2 (𝜑𝑀 ∈ ℕ)
3 pire 24516 . . . . 5 π ∈ ℝ
43a1i 11 . . . 4 (𝜑 → π ∈ ℝ)
54renegcld 10715 . . 3 (𝜑 → -π ∈ ℝ)
6 fourierdlem88.v . . . . . . 7 (𝜑𝑉 ∈ (𝑃𝑀))
7 fourierdlem88.1 . . . . . . . . 9 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
87fourierdlem2 40987 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
92, 8syl 17 . . . . . . 7 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
106, 9mpbid 223 . . . . . 6 (𝜑 → (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
1110simpld 488 . . . . 5 (𝜑𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)))
12 elmapi 8086 . . . . 5 (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
13 frn 6231 . . . . 5 (𝑉:(0...𝑀)⟶ℝ → ran 𝑉 ⊆ ℝ)
1411, 12, 133syl 18 . . . 4 (𝜑 → ran 𝑉 ⊆ ℝ)
15 fourierdlem88.x . . . 4 (𝜑𝑋 ∈ ran 𝑉)
1614, 15sseldd 3764 . . 3 (𝜑𝑋 ∈ ℝ)
17 fourierdlem88.q . . 3 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
185, 4, 16, 7, 1, 2, 6, 17fourierdlem14 40999 . 2 (𝜑𝑄 ∈ (𝑂𝑀))
19 fourierdlem88.f . . . . . . 7 (𝜑𝐹:ℝ⟶ℝ)
20 ioossre 12442 . . . . . . . . . 10 (𝑋(,)+∞) ⊆ ℝ
2120a1i 11 . . . . . . . . 9 (𝜑 → (𝑋(,)+∞) ⊆ ℝ)
2219, 21fssresd 6255 . . . . . . . 8 (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ)
23 ax-resscn 10250 . . . . . . . . 9 ℝ ⊆ ℂ
2421, 23syl6ss 3775 . . . . . . . 8 (𝜑 → (𝑋(,)+∞) ⊆ ℂ)
25 eqid 2765 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
26 pnfxr 10350 . . . . . . . . . 10 +∞ ∈ ℝ*
2726a1i 11 . . . . . . . . 9 (𝜑 → +∞ ∈ ℝ*)
2816ltpnfd 12160 . . . . . . . . 9 (𝜑𝑋 < +∞)
2925, 27, 16, 28lptioo1cn 40540 . . . . . . . 8 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞)))
30 fourierdlem88.y . . . . . . . 8 (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
3122, 24, 29, 30limcrecl 40523 . . . . . . 7 (𝜑𝑌 ∈ ℝ)
32 ioossre 12442 . . . . . . . . . 10 (-∞(,)𝑋) ⊆ ℝ
3332a1i 11 . . . . . . . . 9 (𝜑 → (-∞(,)𝑋) ⊆ ℝ)
3419, 33fssresd 6255 . . . . . . . 8 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ)
3533, 23syl6ss 3775 . . . . . . . 8 (𝜑 → (-∞(,)𝑋) ⊆ ℂ)
36 mnfxr 10354 . . . . . . . . . 10 -∞ ∈ ℝ*
3736a1i 11 . . . . . . . . 9 (𝜑 → -∞ ∈ ℝ*)
3816mnfltd 12163 . . . . . . . . 9 (𝜑 → -∞ < 𝑋)
3925, 37, 16, 38lptioo2cn 40539 . . . . . . . 8 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋)))
40 fourierdlem88.w . . . . . . . 8 (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
4134, 35, 39, 40limcrecl 40523 . . . . . . 7 (𝜑𝑊 ∈ ℝ)
42 fourierdlem88.h . . . . . . 7 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
43 fourierdlem88.k . . . . . . 7 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
44 fourierdlem88.u . . . . . . 7 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
4519, 16, 31, 41, 42, 43, 44fourierdlem55 41039 . . . . . 6 (𝜑𝑈:(-π[,]π)⟶ℝ)
4645ffvelrnda 6553 . . . . 5 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
47 fourierdlem88.n . . . . . . 7 (𝜑𝑁 ∈ ℝ)
48 fourierdlem88.s . . . . . . . 8 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
4948fourierdlem5 40990 . . . . . . 7 (𝑁 ∈ ℝ → 𝑆:(-π[,]π)⟶ℝ)
5047, 49syl 17 . . . . . 6 (𝜑𝑆:(-π[,]π)⟶ℝ)
5150ffvelrnda 6553 . . . . 5 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑆𝑠) ∈ ℝ)
5246, 51remulcld 10328 . . . 4 ((𝜑𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
5352recnd 10326 . . 3 ((𝜑𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℂ)
54 fourierdlem88.g . . 3 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
5553, 54fmptd 6578 . 2 (𝜑𝐺:(-π[,]π)⟶ℂ)
56 ssid 3785 . . . 4 ℂ ⊆ ℂ
57 cncfss 22995 . . . 4 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℝ) ⊆ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
5823, 56, 57mp2an 683 . . 3 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℝ) ⊆ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)
5919adantr 472 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℝ)
601, 2, 18fourierdlem15 41000 . . . . . 6 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
6160adantr 472 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
62 elfzofz 12698 . . . . . 6 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
6362adantl 473 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
6461, 63ffvelrnd 6554 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (-π[,]π))
65 fzofzp1 12778 . . . . . 6 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
6665adantl 473 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
6761, 66ffvelrnd 6554 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (-π[,]π))
6816adantr 472 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
697, 2, 6, 15fourierdlem12 40997 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 𝑋 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
7068recnd 10326 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ)
7170addid2d 10495 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (0 + 𝑋) = 𝑋)
723a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ)
7372renegcld 10715 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ)
7473, 68readdcld 10327 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (-π + 𝑋) ∈ ℝ)
7572, 68readdcld 10327 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (π + 𝑋) ∈ ℝ)
7674, 75iccssred 40393 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
777, 2, 6fourierdlem15 41000 . . . . . . . . . . . . . . 15 (𝜑𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋)))
7877adantr 472 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋)))
7978, 63ffvelrnd 6554 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ((-π + 𝑋)[,](π + 𝑋)))
8076, 79sseldd 3764 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
8180, 68resubcld 10716 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
8217fvmpt2 6484 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
8363, 81, 82syl2anc 579 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
8483oveq1d 6861 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (((𝑉𝑖) − 𝑋) + 𝑋))
8580recnd 10326 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℂ)
8685, 70npcand 10654 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉𝑖) − 𝑋) + 𝑋) = (𝑉𝑖))
8784, 86eqtrd 2799 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (𝑉𝑖))
88 fveq2 6379 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑉𝑖) = (𝑉𝑗))
8988oveq1d 6861 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → ((𝑉𝑖) − 𝑋) = ((𝑉𝑗) − 𝑋))
9089cbvmptv 4911 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
9117, 90eqtri 2787 . . . . . . . . . . . 12 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
9291a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)))
93 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → 𝑗 = (𝑖 + 1))
9493fveq2d 6383 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → (𝑉𝑗) = (𝑉‘(𝑖 + 1)))
9594oveq1d 6861 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
9678, 66ffvelrnd 6554 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ((-π + 𝑋)[,](π + 𝑋)))
9776, 96sseldd 3764 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
9897, 68resubcld 10716 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
9992, 95, 66, 98fvmptd 6481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
10099oveq1d 6861 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋))
10197recnd 10326 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℂ)
102101, 70npcand 10654 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋) = (𝑉‘(𝑖 + 1)))
103100, 102eqtrd 2799 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (𝑉‘(𝑖 + 1)))
10487, 103oveq12d 6864 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
10571, 104eleq12d 2838 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((0 + 𝑋) ∈ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)) ↔ 𝑋 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))))
10669, 105mtbird 316 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ (0 + 𝑋) ∈ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)))
107 0red 10301 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 0 ∈ ℝ)
10883, 81eqeltrd 2844 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
10999, 98eqeltrd 2844 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
110107, 108, 109, 68eliooshift 40395 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (0 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ (0 + 𝑋) ∈ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))))
111106, 110mtbird 316 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 0 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
112 fourierdlem88.fcn . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
113104reseq2d 5567 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) = (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))))
114104oveq1d 6861 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ) = (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
115112, 113, 1143eltr4d 2859 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) ∈ ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ))
11631adantr 472 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑌 ∈ ℝ)
11741adantr 472 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ℝ)
11847adantr 472 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑁 ∈ ℝ)
11959, 64, 67, 68, 111, 115, 116, 117, 42, 43, 44, 118, 48, 54fourierdlem78 41062 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℝ))
12058, 119sseldi 3761 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
121 eqid 2765 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠))
122 eqid 2765 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠))
123 eqid 2765 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠)))
1243renegcli 10600 . . . . . . . . . . 11 -π ∈ ℝ
125124rexri 10355 . . . . . . . . . 10 -π ∈ ℝ*
126125a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → -π ∈ ℝ*)
1273rexri 10355 . . . . . . . . . 10 π ∈ ℝ*
128127a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → π ∈ ℝ*)
12961adantr 472 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(-π[,]π))
130 simplr 785 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀))
131126, 128, 129, 130fourierdlem8 40993 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
132 ioossicc 12466 . . . . . . . . . 10 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
133132sseli 3759 . . . . . . . . 9 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
134133adantl 473 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
135131, 134sseldd 3764 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ (-π[,]π))
13619, 16, 31, 41, 42fourierdlem9 40994 . . . . . . . . . 10 (𝜑𝐻:(-π[,]π)⟶ℝ)
137136ad2antrr 717 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐻:(-π[,]π)⟶ℝ)
138137, 135ffvelrnd 6554 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) ∈ ℝ)
13943fourierdlem43 41028 . . . . . . . . . 10 𝐾:(-π[,]π)⟶ℝ
140139a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐾:(-π[,]π)⟶ℝ)
141140, 135ffvelrnd 6554 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐾𝑠) ∈ ℝ)
142138, 141remulcld 10328 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
14344fvmpt2 6484 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
144135, 142, 143syl2anc 579 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
145144, 142eqeltrd 2844 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈𝑠) ∈ ℝ)
146145recnd 10326 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈𝑠) ∈ ℂ)
14747, 48fourierdlem18 41003 . . . . . . . . 9 (𝜑𝑆 ∈ ((-π[,]π)–cn→ℝ))
148 cncff 22989 . . . . . . . . 9 (𝑆 ∈ ((-π[,]π)–cn→ℝ) → 𝑆:(-π[,]π)⟶ℝ)
149147, 148syl 17 . . . . . . . 8 (𝜑𝑆:(-π[,]π)⟶ℝ)
150149adantr 472 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑆:(-π[,]π)⟶ℝ)
151150adantr 472 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑆:(-π[,]π)⟶ℝ)
152151, 135ffvelrnd 6554 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑆𝑠) ∈ ℝ)
153152recnd 10326 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑆𝑠) ∈ ℂ)
154 eqid 2765 . . . . . 6 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠))
155 eqid 2765 . . . . . 6 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠))
156 eqid 2765 . . . . . 6 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠)))
157138recnd 10326 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) ∈ ℂ)
158141recnd 10326 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐾𝑠) ∈ ℂ)
159 fourierdlem88.r . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
160 fourierdlem88.i . . . . . . . 8 𝐼 = (ℝ D 𝐹)
161 fourierdlem88.ifn . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
16223a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ℝ ⊆ ℂ)
163161, 162fssd 6239 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
164 fourierdlem88.d . . . . . . . 8 (𝜑𝐷 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
165 eqid 2765 . . . . . . . 8 if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) = if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖)))
16616, 7, 19, 15, 30, 41, 42, 2, 6, 159, 17, 1, 160, 163, 164, 165fourierdlem75 41059 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
167136adantr 472 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐻:(-π[,]π)⟶ℝ)
168125a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*)
169127a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*)
170 simpr 477 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
171168, 169, 61, 170fourierdlem8 40993 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
172132, 171syl5ss 3774 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
173167, 172feqresmpt 6443 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)))
174173oveq1d 6861 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) lim (𝑄𝑖)))
175166, 174eleqtrd 2846 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) lim (𝑄𝑖)))
176 limcresi 23954 . . . . . . . 8 (𝐾 lim (𝑄𝑖)) ⊆ ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))
17743fourierdlem62 41046 . . . . . . . . . 10 𝐾 ∈ ((-π[,]π)–cn→ℝ)
178177a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐾 ∈ ((-π[,]π)–cn→ℝ))
179178, 64cnlimci 23958 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄𝑖)) ∈ (𝐾 lim (𝑄𝑖)))
180176, 179sseldi 3761 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄𝑖)) ∈ ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
181139a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐾:(-π[,]π)⟶ℝ)
182181, 172feqresmpt 6443 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)))
183182oveq1d 6861 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) lim (𝑄𝑖)))
184180, 183eleqtrd 2846 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄𝑖)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) lim (𝑄𝑖)))
185154, 155, 156, 157, 158, 175, 184mullimc 40510 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) lim (𝑄𝑖)))
186144eqcomd 2771 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐻𝑠) · (𝐾𝑠)) = (𝑈𝑠))
187186mpteq2dva 4905 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)))
188187oveq1d 6861 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) lim (𝑄𝑖)))
189185, 188eleqtrd 2846 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) lim (𝑄𝑖)))
190 limcresi 23954 . . . . . 6 (𝑆 lim (𝑄𝑖)) ⊆ ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))
191147adantr 472 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑆 ∈ ((-π[,]π)–cn→ℝ))
192191, 64cnlimci 23958 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄𝑖)) ∈ (𝑆 lim (𝑄𝑖)))
193190, 192sseldi 3761 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄𝑖)) ∈ ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
194150, 172feqresmpt 6443 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)))
195194oveq1d 6861 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) lim (𝑄𝑖)))
196193, 195eleqtrd 2846 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄𝑖)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) lim (𝑄𝑖)))
197121, 122, 123, 146, 153, 189, 196mullimc 40510 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) · (𝑆‘(𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) lim (𝑄𝑖)))
19852, 54fmptd 6578 . . . . . . 7 (𝜑𝐺:(-π[,]π)⟶ℝ)
199198adantr 472 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐺:(-π[,]π)⟶ℝ)
200199, 172feqresmpt 6443 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺𝑠)))
201145, 152remulcld 10328 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
20254fvmpt2 6484 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
203135, 201, 202syl2anc 579 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
204203mpteq2dva 4905 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))))
205200, 204eqtr2d 2800 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
206205oveq1d 6861 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) lim (𝑄𝑖)) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
207197, 206eleqtrd 2846 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → ((if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) · (𝑆‘(𝑄𝑖))) ∈ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
208 fourierdlem88.l . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
209 fourierdlem88.c . . . . . . . 8 (𝜑𝐶 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
210 eqid 2765 . . . . . . . 8 if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) = if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1))))
21116, 7, 19, 15, 31, 40, 42, 2, 6, 208, 17, 1, 160, 161, 209, 210fourierdlem74 41058 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
212173oveq1d 6861 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) lim (𝑄‘(𝑖 + 1))))
213211, 212eleqtrd 2846 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) lim (𝑄‘(𝑖 + 1))))
214 limcresi 23954 . . . . . . . 8 (𝐾 lim (𝑄‘(𝑖 + 1))) ⊆ ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))
215178, 67cnlimci 23958 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘(𝑖 + 1))) ∈ (𝐾 lim (𝑄‘(𝑖 + 1))))
216214, 215sseldi 3761 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘(𝑖 + 1))) ∈ ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
217182oveq1d 6861 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) lim (𝑄‘(𝑖 + 1))))
218216, 217eleqtrd 2846 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘(𝑖 + 1))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) lim (𝑄‘(𝑖 + 1))))
219154, 155, 156, 157, 158, 213, 218mullimc 40510 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) lim (𝑄‘(𝑖 + 1))))
220187oveq1d 6861 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) lim (𝑄‘(𝑖 + 1))))
221219, 220eleqtrd 2846 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) lim (𝑄‘(𝑖 + 1))))
222 limcresi 23954 . . . . . 6 (𝑆 lim (𝑄‘(𝑖 + 1))) ⊆ ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))
223191, 67cnlimci 23958 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘(𝑖 + 1))) ∈ (𝑆 lim (𝑄‘(𝑖 + 1))))
224222, 223sseldi 3761 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘(𝑖 + 1))) ∈ ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
225194oveq1d 6861 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) lim (𝑄‘(𝑖 + 1))))
226224, 225eleqtrd 2846 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘(𝑖 + 1))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) lim (𝑄‘(𝑖 + 1))))
227121, 122, 123, 146, 153, 221, 226mullimc 40510 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) · (𝑆‘(𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) lim (𝑄‘(𝑖 + 1))))
228205oveq1d 6861 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) lim (𝑄‘(𝑖 + 1))) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
229227, 228eleqtrd 2846 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → ((if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) · (𝑆‘(𝑄‘(𝑖 + 1)))) ∈ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
2301, 2, 18, 55, 120, 207, 229fourierdlem69 41053 1 (𝜑𝐺 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  {crab 3059  wss 3734  ifcif 4245   class class class wbr 4811  cmpt 4890  ran crn 5280  cres 5281  wf 6066  cfv 6070  (class class class)co 6846  𝑚 cmap 8064  cc 10191  cr 10192  0cc0 10193  1c1 10194   + caddc 10196   · cmul 10198  +∞cpnf 10329  -∞cmnf 10330  *cxr 10331   < clt 10332  cmin 10524  -cneg 10525   / cdiv 10942  cn 11278  2c2 11331  (,)cioo 12382  [,]cicc 12385  ...cfz 12538  ..^cfzo 12678  sincsin 15090  πcpi 15093  TopOpenctopn 16362  fldccnfld 20033  cnccncf 22972  𝐿1cibl 23689   lim climc 23931   D cdv 23932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cc 9514  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-addf 10272  ax-mulf 10273
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-symdif 4007  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-disj 4780  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-ofr 7100  df-om 7268  df-1st 7370  df-2nd 7371  df-supp 7502  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-omul 7773  df-er 7951  df-map 8066  df-pm 8067  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fsupp 8487  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-acn 9023  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-4 11341  df-5 11342  df-6 11343  df-7 11344  df-8 11345  df-9 11346  df-n0 11543  df-z 11629  df-dec 11746  df-uz 11892  df-q 11995  df-rp 12034  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12386  df-ioc 12387  df-ico 12388  df-icc 12389  df-fz 12539  df-fzo 12679  df-fl 12806  df-mod 12882  df-seq 13014  df-exp 13073  df-fac 13270  df-bc 13299  df-hash 13327  df-shft 14106  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-limsup 14501  df-clim 14518  df-rlim 14519  df-sum 14716  df-ef 15094  df-sin 15096  df-cos 15097  df-pi 15099  df-struct 16146  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-mulr 16242  df-starv 16243  df-sca 16244  df-vsca 16245  df-ip 16246  df-tset 16247  df-ple 16248  df-ds 16250  df-unif 16251  df-hom 16252  df-cco 16253  df-rest 16363  df-topn 16364  df-0g 16382  df-gsum 16383  df-topgen 16384  df-pt 16385  df-prds 16388  df-xrs 16442  df-qtop 16447  df-imas 16448  df-xps 16450  df-mre 16526  df-mrc 16527  df-acs 16529  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-submnd 17616  df-mulg 17822  df-cntz 18027  df-cmn 18475  df-psmet 20025  df-xmet 20026  df-met 20027  df-bl 20028  df-mopn 20029  df-fbas 20030  df-fg 20031  df-cnfld 20034  df-top 20992  df-topon 21009  df-topsp 21031  df-bases 21044  df-cld 21117  df-ntr 21118  df-cls 21119  df-nei 21196  df-lp 21234  df-perf 21235  df-cn 21325  df-cnp 21326  df-t1 21412  df-haus 21413  df-cmp 21484  df-tx 21659  df-hmeo 21852  df-fil 21943  df-fm 22035  df-flim 22036  df-flf 22037  df-xms 22418  df-ms 22419  df-tms 22420  df-cncf 22974  df-ovol 23536  df-vol 23537  df-mbf 23691  df-itg1 23692  df-itg2 23693  df-ibl 23694  df-itg 23695  df-0p 23742  df-limc 23935  df-dv 23936
This theorem is referenced by:  fourierdlem95  41079  fourierdlem103  41087  fourierdlem104  41088
  Copyright terms: Public domain W3C validator