Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem88 Structured version   Visualization version   GIF version

Theorem fourierdlem88 42836
Description: Given a piecewise continuous function 𝐹, a continuous function 𝐾 and a continuous function 𝑆, the function 𝐺 is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem88.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem88.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem88.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem88.y (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem88.w (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem88.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem88.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem88.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem88.n (𝜑𝑁 ∈ ℝ)
fourierdlem88.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
fourierdlem88.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem88.m (𝜑𝑀 ∈ ℕ)
fourierdlem88.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem88.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem88.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem88.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem88.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem88.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem88.i 𝐼 = (ℝ D 𝐹)
fourierdlem88.ifn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
fourierdlem88.c (𝜑𝐶 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem88.d (𝜑𝐷 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
Assertion
Ref Expression
fourierdlem88 (𝜑𝐺 ∈ 𝐿1)
Distinct variable groups:   𝐶,𝑠   𝐷,𝑠   𝐹,𝑠   𝑖,𝐺,𝑠   𝐻,𝑠   𝐾,𝑠   𝐿,𝑠   𝑖,𝑀,𝑚,𝑝   𝑀,𝑠   𝑁,𝑠   𝑄,𝑖,𝑝   𝑄,𝑠   𝑅,𝑠   𝑆,𝑠   𝑖,𝑉,𝑝   𝑉,𝑠   𝑊,𝑠   𝑖,𝑋,𝑚,𝑝   𝑋,𝑠   𝑌,𝑠   𝜑,𝑖,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐶(𝑖,𝑚,𝑝)   𝐷(𝑖,𝑚,𝑝)   𝑃(𝑖,𝑚,𝑠,𝑝)   𝑄(𝑚)   𝑅(𝑖,𝑚,𝑝)   𝑆(𝑖,𝑚,𝑝)   𝑈(𝑖,𝑚,𝑠,𝑝)   𝐹(𝑖,𝑚,𝑝)   𝐺(𝑚,𝑝)   𝐻(𝑖,𝑚,𝑝)   𝐼(𝑖,𝑚,𝑠,𝑝)   𝐾(𝑖,𝑚,𝑝)   𝐿(𝑖,𝑚,𝑝)   𝑁(𝑖,𝑚,𝑝)   𝑂(𝑖,𝑚,𝑠,𝑝)   𝑉(𝑚)   𝑊(𝑖,𝑚,𝑝)   𝑌(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem88
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem88.o . 2 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
2 fourierdlem88.m . 2 (𝜑𝑀 ∈ ℕ)
3 pire 25051 . . . . 5 π ∈ ℝ
43a1i 11 . . . 4 (𝜑 → π ∈ ℝ)
54renegcld 11056 . . 3 (𝜑 → -π ∈ ℝ)
6 fourierdlem88.v . . . . . . 7 (𝜑𝑉 ∈ (𝑃𝑀))
7 fourierdlem88.1 . . . . . . . . 9 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
87fourierdlem2 42751 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
92, 8syl 17 . . . . . . 7 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
106, 9mpbid 235 . . . . . 6 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
1110simpld 498 . . . . 5 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
12 elmapi 8411 . . . . 5 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
13 frn 6493 . . . . 5 (𝑉:(0...𝑀)⟶ℝ → ran 𝑉 ⊆ ℝ)
1411, 12, 133syl 18 . . . 4 (𝜑 → ran 𝑉 ⊆ ℝ)
15 fourierdlem88.x . . . 4 (𝜑𝑋 ∈ ran 𝑉)
1614, 15sseldd 3916 . . 3 (𝜑𝑋 ∈ ℝ)
17 fourierdlem88.q . . 3 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
185, 4, 16, 7, 1, 2, 6, 17fourierdlem14 42763 . 2 (𝜑𝑄 ∈ (𝑂𝑀))
19 fourierdlem88.f . . . . . . 7 (𝜑𝐹:ℝ⟶ℝ)
20 ioossre 12786 . . . . . . . . . 10 (𝑋(,)+∞) ⊆ ℝ
2120a1i 11 . . . . . . . . 9 (𝜑 → (𝑋(,)+∞) ⊆ ℝ)
2219, 21fssresd 6519 . . . . . . . 8 (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ)
23 ax-resscn 10583 . . . . . . . . 9 ℝ ⊆ ℂ
2421, 23sstrdi 3927 . . . . . . . 8 (𝜑 → (𝑋(,)+∞) ⊆ ℂ)
25 eqid 2798 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
26 pnfxr 10684 . . . . . . . . . 10 +∞ ∈ ℝ*
2726a1i 11 . . . . . . . . 9 (𝜑 → +∞ ∈ ℝ*)
2816ltpnfd 12504 . . . . . . . . 9 (𝜑𝑋 < +∞)
2925, 27, 16, 28lptioo1cn 42288 . . . . . . . 8 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞)))
30 fourierdlem88.y . . . . . . . 8 (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
3122, 24, 29, 30limcrecl 42271 . . . . . . 7 (𝜑𝑌 ∈ ℝ)
32 ioossre 12786 . . . . . . . . . 10 (-∞(,)𝑋) ⊆ ℝ
3332a1i 11 . . . . . . . . 9 (𝜑 → (-∞(,)𝑋) ⊆ ℝ)
3419, 33fssresd 6519 . . . . . . . 8 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ)
3533, 23sstrdi 3927 . . . . . . . 8 (𝜑 → (-∞(,)𝑋) ⊆ ℂ)
36 mnfxr 10687 . . . . . . . . . 10 -∞ ∈ ℝ*
3736a1i 11 . . . . . . . . 9 (𝜑 → -∞ ∈ ℝ*)
3816mnfltd 12507 . . . . . . . . 9 (𝜑 → -∞ < 𝑋)
3925, 37, 16, 38lptioo2cn 42287 . . . . . . . 8 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋)))
40 fourierdlem88.w . . . . . . . 8 (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
4134, 35, 39, 40limcrecl 42271 . . . . . . 7 (𝜑𝑊 ∈ ℝ)
42 fourierdlem88.h . . . . . . 7 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
43 fourierdlem88.k . . . . . . 7 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
44 fourierdlem88.u . . . . . . 7 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
4519, 16, 31, 41, 42, 43, 44fourierdlem55 42803 . . . . . 6 (𝜑𝑈:(-π[,]π)⟶ℝ)
4645ffvelrnda 6828 . . . . 5 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
47 fourierdlem88.n . . . . . . 7 (𝜑𝑁 ∈ ℝ)
48 fourierdlem88.s . . . . . . . 8 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
4948fourierdlem5 42754 . . . . . . 7 (𝑁 ∈ ℝ → 𝑆:(-π[,]π)⟶ℝ)
5047, 49syl 17 . . . . . 6 (𝜑𝑆:(-π[,]π)⟶ℝ)
5150ffvelrnda 6828 . . . . 5 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑆𝑠) ∈ ℝ)
5246, 51remulcld 10660 . . . 4 ((𝜑𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
5352recnd 10658 . . 3 ((𝜑𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℂ)
54 fourierdlem88.g . . 3 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
5553, 54fmptd 6855 . 2 (𝜑𝐺:(-π[,]π)⟶ℂ)
56 ssid 3937 . . . 4 ℂ ⊆ ℂ
57 cncfss 23504 . . . 4 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℝ) ⊆ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
5823, 56, 57mp2an 691 . . 3 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℝ) ⊆ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)
5919adantr 484 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℝ)
601, 2, 18fourierdlem15 42764 . . . . . 6 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
6160adantr 484 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
62 elfzofz 13048 . . . . . 6 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
6362adantl 485 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
6461, 63ffvelrnd 6829 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (-π[,]π))
65 fzofzp1 13129 . . . . . 6 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
6665adantl 485 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
6761, 66ffvelrnd 6829 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (-π[,]π))
6816adantr 484 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
697, 2, 6, 15fourierdlem12 42761 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 𝑋 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
7068recnd 10658 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ)
7170addid2d 10830 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (0 + 𝑋) = 𝑋)
723a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ)
7372renegcld 11056 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ)
7473, 68readdcld 10659 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (-π + 𝑋) ∈ ℝ)
7572, 68readdcld 10659 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (π + 𝑋) ∈ ℝ)
7674, 75iccssred 12812 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
777, 2, 6fourierdlem15 42764 . . . . . . . . . . . . . . 15 (𝜑𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋)))
7877adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋)))
7978, 63ffvelrnd 6829 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ((-π + 𝑋)[,](π + 𝑋)))
8076, 79sseldd 3916 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
8180, 68resubcld 11057 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
8217fvmpt2 6756 . . . . . . . . . . 11 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
8363, 81, 82syl2anc 587 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
8483oveq1d 7150 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (((𝑉𝑖) − 𝑋) + 𝑋))
8580recnd 10658 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℂ)
8685, 70npcand 10990 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉𝑖) − 𝑋) + 𝑋) = (𝑉𝑖))
8784, 86eqtrd 2833 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (𝑉𝑖))
88 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑉𝑖) = (𝑉𝑗))
8988oveq1d 7150 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → ((𝑉𝑖) − 𝑋) = ((𝑉𝑗) − 𝑋))
9089cbvmptv 5133 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
9117, 90eqtri 2821 . . . . . . . . . . . 12 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
9291a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)))
93 simpr 488 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → 𝑗 = (𝑖 + 1))
9493fveq2d 6649 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → (𝑉𝑗) = (𝑉‘(𝑖 + 1)))
9594oveq1d 7150 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
9678, 66ffvelrnd 6829 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ((-π + 𝑋)[,](π + 𝑋)))
9776, 96sseldd 3916 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
9897, 68resubcld 11057 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
9992, 95, 66, 98fvmptd 6752 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
10099oveq1d 7150 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋))
10197recnd 10658 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℂ)
102101, 70npcand 10990 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋) = (𝑉‘(𝑖 + 1)))
103100, 102eqtrd 2833 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (𝑉‘(𝑖 + 1)))
10487, 103oveq12d 7153 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
10571, 104eleq12d 2884 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((0 + 𝑋) ∈ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)) ↔ 𝑋 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))))
10669, 105mtbird 328 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ (0 + 𝑋) ∈ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)))
107 0red 10633 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 0 ∈ ℝ)
10883, 81eqeltrd 2890 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
10999, 98eqeltrd 2890 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
110107, 108, 109, 68eliooshift 42143 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (0 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ (0 + 𝑋) ∈ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))))
111106, 110mtbird 328 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 0 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
112 fourierdlem88.fcn . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
113104reseq2d 5818 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) = (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))))
114104oveq1d 7150 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ) = (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
115112, 113, 1143eltr4d 2905 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) ∈ ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ))
11631adantr 484 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑌 ∈ ℝ)
11741adantr 484 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ℝ)
11847adantr 484 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑁 ∈ ℝ)
11959, 64, 67, 68, 111, 115, 116, 117, 42, 43, 44, 118, 48, 54fourierdlem78 42826 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℝ))
12058, 119sseldi 3913 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
121 eqid 2798 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠))
122 eqid 2798 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠))
123 eqid 2798 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠)))
1243renegcli 10936 . . . . . . . . . . 11 -π ∈ ℝ
125124rexri 10688 . . . . . . . . . 10 -π ∈ ℝ*
126125a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → -π ∈ ℝ*)
1273rexri 10688 . . . . . . . . . 10 π ∈ ℝ*
128127a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → π ∈ ℝ*)
12961adantr 484 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(-π[,]π))
130 simplr 768 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀))
131126, 128, 129, 130fourierdlem8 42757 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
132 ioossicc 12811 . . . . . . . . . 10 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
133132sseli 3911 . . . . . . . . 9 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
134133adantl 485 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
135131, 134sseldd 3916 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ (-π[,]π))
13619, 16, 31, 41, 42fourierdlem9 42758 . . . . . . . . . 10 (𝜑𝐻:(-π[,]π)⟶ℝ)
137136ad2antrr 725 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐻:(-π[,]π)⟶ℝ)
138137, 135ffvelrnd 6829 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) ∈ ℝ)
13943fourierdlem43 42792 . . . . . . . . . 10 𝐾:(-π[,]π)⟶ℝ
140139a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐾:(-π[,]π)⟶ℝ)
141140, 135ffvelrnd 6829 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐾𝑠) ∈ ℝ)
142138, 141remulcld 10660 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
14344fvmpt2 6756 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
144135, 142, 143syl2anc 587 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
145144, 142eqeltrd 2890 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈𝑠) ∈ ℝ)
146145recnd 10658 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈𝑠) ∈ ℂ)
14747, 48fourierdlem18 42767 . . . . . . . . 9 (𝜑𝑆 ∈ ((-π[,]π)–cn→ℝ))
148 cncff 23498 . . . . . . . . 9 (𝑆 ∈ ((-π[,]π)–cn→ℝ) → 𝑆:(-π[,]π)⟶ℝ)
149147, 148syl 17 . . . . . . . 8 (𝜑𝑆:(-π[,]π)⟶ℝ)
150149adantr 484 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑆:(-π[,]π)⟶ℝ)
151150adantr 484 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑆:(-π[,]π)⟶ℝ)
152151, 135ffvelrnd 6829 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑆𝑠) ∈ ℝ)
153152recnd 10658 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑆𝑠) ∈ ℂ)
154 eqid 2798 . . . . . 6 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠))
155 eqid 2798 . . . . . 6 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠))
156 eqid 2798 . . . . . 6 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠)))
157138recnd 10658 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) ∈ ℂ)
158141recnd 10658 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐾𝑠) ∈ ℂ)
159 fourierdlem88.r . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
160 fourierdlem88.i . . . . . . . 8 𝐼 = (ℝ D 𝐹)
161 fourierdlem88.ifn . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
16223a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ℝ ⊆ ℂ)
163161, 162fssd 6502 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
164 fourierdlem88.d . . . . . . . 8 (𝜑𝐷 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
165 eqid 2798 . . . . . . . 8 if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) = if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖)))
16616, 7, 19, 15, 30, 41, 42, 2, 6, 159, 17, 1, 160, 163, 164, 165fourierdlem75 42823 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
167136adantr 484 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐻:(-π[,]π)⟶ℝ)
168125a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*)
169127a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*)
170 simpr 488 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
171168, 169, 61, 170fourierdlem8 42757 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
172132, 171sstrid 3926 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
173167, 172feqresmpt 6709 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)))
174173oveq1d 7150 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) lim (𝑄𝑖)))
175166, 174eleqtrd 2892 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) lim (𝑄𝑖)))
176 limcresi 24488 . . . . . . . 8 (𝐾 lim (𝑄𝑖)) ⊆ ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))
17743fourierdlem62 42810 . . . . . . . . . 10 𝐾 ∈ ((-π[,]π)–cn→ℝ)
178177a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐾 ∈ ((-π[,]π)–cn→ℝ))
179178, 64cnlimci 24492 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄𝑖)) ∈ (𝐾 lim (𝑄𝑖)))
180176, 179sseldi 3913 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄𝑖)) ∈ ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
181139a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐾:(-π[,]π)⟶ℝ)
182181, 172feqresmpt 6709 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)))
183182oveq1d 7150 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) lim (𝑄𝑖)))
184180, 183eleqtrd 2892 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄𝑖)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) lim (𝑄𝑖)))
185154, 155, 156, 157, 158, 175, 184mullimc 42258 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) lim (𝑄𝑖)))
186144eqcomd 2804 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐻𝑠) · (𝐾𝑠)) = (𝑈𝑠))
187186mpteq2dva 5125 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)))
188187oveq1d 7150 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) lim (𝑄𝑖)))
189185, 188eleqtrd 2892 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) lim (𝑄𝑖)))
190 limcresi 24488 . . . . . 6 (𝑆 lim (𝑄𝑖)) ⊆ ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))
191147adantr 484 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑆 ∈ ((-π[,]π)–cn→ℝ))
192191, 64cnlimci 24492 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄𝑖)) ∈ (𝑆 lim (𝑄𝑖)))
193190, 192sseldi 3913 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄𝑖)) ∈ ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
194150, 172feqresmpt 6709 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)))
195194oveq1d 7150 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) lim (𝑄𝑖)))
196193, 195eleqtrd 2892 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄𝑖)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) lim (𝑄𝑖)))
197121, 122, 123, 146, 153, 189, 196mullimc 42258 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) · (𝑆‘(𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) lim (𝑄𝑖)))
19852, 54fmptd 6855 . . . . . . 7 (𝜑𝐺:(-π[,]π)⟶ℝ)
199198adantr 484 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐺:(-π[,]π)⟶ℝ)
200199, 172feqresmpt 6709 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺𝑠)))
201145, 152remulcld 10660 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
20254fvmpt2 6756 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
203135, 201, 202syl2anc 587 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
204203mpteq2dva 5125 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))))
205200, 204eqtr2d 2834 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
206205oveq1d 7150 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) lim (𝑄𝑖)) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
207197, 206eleqtrd 2892 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → ((if((𝑉𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) · (𝑆‘(𝑄𝑖))) ∈ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
208 fourierdlem88.l . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
209 fourierdlem88.c . . . . . . . 8 (𝜑𝐶 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
210 eqid 2798 . . . . . . . 8 if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) = if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1))))
21116, 7, 19, 15, 31, 40, 42, 2, 6, 208, 17, 1, 160, 161, 209, 210fourierdlem74 42822 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
212173oveq1d 7150 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) lim (𝑄‘(𝑖 + 1))))
213211, 212eleqtrd 2892 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) lim (𝑄‘(𝑖 + 1))))
214 limcresi 24488 . . . . . . . 8 (𝐾 lim (𝑄‘(𝑖 + 1))) ⊆ ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))
215178, 67cnlimci 24492 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘(𝑖 + 1))) ∈ (𝐾 lim (𝑄‘(𝑖 + 1))))
216214, 215sseldi 3913 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘(𝑖 + 1))) ∈ ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
217182oveq1d 7150 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) lim (𝑄‘(𝑖 + 1))))
218216, 217eleqtrd 2892 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘(𝑖 + 1))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) lim (𝑄‘(𝑖 + 1))))
219154, 155, 156, 157, 158, 213, 218mullimc 42258 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) lim (𝑄‘(𝑖 + 1))))
220187oveq1d 7150 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) lim (𝑄‘(𝑖 + 1))))
221219, 220eleqtrd 2892 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) lim (𝑄‘(𝑖 + 1))))
222 limcresi 24488 . . . . . 6 (𝑆 lim (𝑄‘(𝑖 + 1))) ⊆ ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))
223191, 67cnlimci 24492 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘(𝑖 + 1))) ∈ (𝑆 lim (𝑄‘(𝑖 + 1))))
224222, 223sseldi 3913 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘(𝑖 + 1))) ∈ ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
225194oveq1d 7150 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) lim (𝑄‘(𝑖 + 1))))
226224, 225eleqtrd 2892 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘(𝑖 + 1))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) lim (𝑄‘(𝑖 + 1))))
227121, 122, 123, 146, 153, 221, 226mullimc 42258 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) · (𝑆‘(𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) lim (𝑄‘(𝑖 + 1))))
228205oveq1d 7150 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) lim (𝑄‘(𝑖 + 1))) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
229227, 228eleqtrd 2892 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → ((if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) · (𝑆‘(𝑄‘(𝑖 + 1)))) ∈ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
2301, 2, 18, 55, 120, 207, 229fourierdlem69 42817 1 (𝜑𝐺 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  {crab 3110  wss 3881  ifcif 4425   class class class wbr 5030  cmpt 5110  ran crn 5520  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  (,)cioo 12726  [,]cicc 12729  ...cfz 12885  ..^cfzo 13028  sincsin 15409  πcpi 15412  TopOpenctopn 16687  fldccnfld 20091  cnccncf 23481  𝐿1cibl 24221   lim climc 24465   D cdv 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-symdif 4169  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-t1 21919  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-ibl 24226  df-itg 24227  df-0p 24274  df-limc 24469  df-dv 24470
This theorem is referenced by:  fourierdlem95  42843  fourierdlem103  42851  fourierdlem104  42852
  Copyright terms: Public domain W3C validator