| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fourierdlem88.o | . 2
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) | 
| 2 |  | fourierdlem88.m | . 2
⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| 3 |  | pire 26501 | . . . . 5
⊢ π
∈ ℝ | 
| 4 | 3 | a1i 11 | . . . 4
⊢ (𝜑 → π ∈
ℝ) | 
| 5 | 4 | renegcld 11691 | . . 3
⊢ (𝜑 → -π ∈
ℝ) | 
| 6 |  | fourierdlem88.v | . . . . . . 7
⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) | 
| 7 |  | fourierdlem88.1 | . . . . . . . . 9
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) | 
| 8 | 7 | fourierdlem2 46129 | . . . . . . . 8
⊢ (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) | 
| 9 | 2, 8 | syl 17 | . . . . . . 7
⊢ (𝜑 → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) | 
| 10 | 6, 9 | mpbid 232 | . . . . . 6
⊢ (𝜑 → (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))))) | 
| 11 | 10 | simpld 494 | . . . . 5
⊢ (𝜑 → 𝑉 ∈ (ℝ ↑m
(0...𝑀))) | 
| 12 |  | elmapi 8890 | . . . . 5
⊢ (𝑉 ∈ (ℝ
↑m (0...𝑀))
→ 𝑉:(0...𝑀)⟶ℝ) | 
| 13 |  | frn 6742 | . . . . 5
⊢ (𝑉:(0...𝑀)⟶ℝ → ran 𝑉 ⊆
ℝ) | 
| 14 | 11, 12, 13 | 3syl 18 | . . . 4
⊢ (𝜑 → ran 𝑉 ⊆ ℝ) | 
| 15 |  | fourierdlem88.x | . . . 4
⊢ (𝜑 → 𝑋 ∈ ran 𝑉) | 
| 16 | 14, 15 | sseldd 3983 | . . 3
⊢ (𝜑 → 𝑋 ∈ ℝ) | 
| 17 |  | fourierdlem88.q | . . 3
⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) | 
| 18 | 5, 4, 16, 7, 1, 2,
6, 17 | fourierdlem14 46141 | . 2
⊢ (𝜑 → 𝑄 ∈ (𝑂‘𝑀)) | 
| 19 |  | fourierdlem88.f | . . . . . . 7
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | 
| 20 |  | ioossre 13449 | . . . . . . . . . 10
⊢ (𝑋(,)+∞) ⊆
ℝ | 
| 21 | 20 | a1i 11 | . . . . . . . . 9
⊢ (𝜑 → (𝑋(,)+∞) ⊆
ℝ) | 
| 22 | 19, 21 | fssresd 6774 | . . . . . . . 8
⊢ (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ) | 
| 23 |  | ax-resscn 11213 | . . . . . . . . 9
⊢ ℝ
⊆ ℂ | 
| 24 | 21, 23 | sstrdi 3995 | . . . . . . . 8
⊢ (𝜑 → (𝑋(,)+∞) ⊆
ℂ) | 
| 25 |  | eqid 2736 | . . . . . . . . 9
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) | 
| 26 |  | pnfxr 11316 | . . . . . . . . . 10
⊢ +∞
∈ ℝ* | 
| 27 | 26 | a1i 11 | . . . . . . . . 9
⊢ (𝜑 → +∞ ∈
ℝ*) | 
| 28 | 16 | ltpnfd 13164 | . . . . . . . . 9
⊢ (𝜑 → 𝑋 < +∞) | 
| 29 | 25, 27, 16, 28 | lptioo1cn 45666 | . . . . . . . 8
⊢ (𝜑 → 𝑋 ∈
((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞))) | 
| 30 |  | fourierdlem88.y | . . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) | 
| 31 | 22, 24, 29, 30 | limcrecl 45649 | . . . . . . 7
⊢ (𝜑 → 𝑌 ∈ ℝ) | 
| 32 |  | ioossre 13449 | . . . . . . . . . 10
⊢
(-∞(,)𝑋)
⊆ ℝ | 
| 33 | 32 | a1i 11 | . . . . . . . . 9
⊢ (𝜑 → (-∞(,)𝑋) ⊆
ℝ) | 
| 34 | 19, 33 | fssresd 6774 | . . . . . . . 8
⊢ (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ) | 
| 35 | 33, 23 | sstrdi 3995 | . . . . . . . 8
⊢ (𝜑 → (-∞(,)𝑋) ⊆
ℂ) | 
| 36 |  | mnfxr 11319 | . . . . . . . . . 10
⊢ -∞
∈ ℝ* | 
| 37 | 36 | a1i 11 | . . . . . . . . 9
⊢ (𝜑 → -∞ ∈
ℝ*) | 
| 38 | 16 | mnfltd 13167 | . . . . . . . . 9
⊢ (𝜑 → -∞ < 𝑋) | 
| 39 | 25, 37, 16, 38 | lptioo2cn 45665 | . . . . . . . 8
⊢ (𝜑 → 𝑋 ∈
((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋))) | 
| 40 |  | fourierdlem88.w | . . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) | 
| 41 | 34, 35, 39, 40 | limcrecl 45649 | . . . . . . 7
⊢ (𝜑 → 𝑊 ∈ ℝ) | 
| 42 |  | fourierdlem88.h | . . . . . . 7
⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) | 
| 43 |  | fourierdlem88.k | . . . . . . 7
⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) | 
| 44 |  | fourierdlem88.u | . . . . . . 7
⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) | 
| 45 | 19, 16, 31, 41, 42, 43, 44 | fourierdlem55 46181 | . . . . . 6
⊢ (𝜑 → 𝑈:(-π[,]π)⟶ℝ) | 
| 46 | 45 | ffvelcdmda 7103 | . . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → (𝑈‘𝑠) ∈ ℝ) | 
| 47 |  | fourierdlem88.n | . . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℝ) | 
| 48 |  | fourierdlem88.s | . . . . . . . 8
⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦
(sin‘((𝑁 + (1 / 2))
· 𝑠))) | 
| 49 | 48 | fourierdlem5 46132 | . . . . . . 7
⊢ (𝑁 ∈ ℝ → 𝑆:(-π[,]π)⟶ℝ) | 
| 50 | 47, 49 | syl 17 | . . . . . 6
⊢ (𝜑 → 𝑆:(-π[,]π)⟶ℝ) | 
| 51 | 50 | ffvelcdmda 7103 | . . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → (𝑆‘𝑠) ∈ ℝ) | 
| 52 | 46, 51 | remulcld 11292 | . . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈‘𝑠) · (𝑆‘𝑠)) ∈ ℝ) | 
| 53 | 52 | recnd 11290 | . . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈‘𝑠) · (𝑆‘𝑠)) ∈ ℂ) | 
| 54 |  | fourierdlem88.g | . . 3
⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) | 
| 55 | 53, 54 | fmptd 7133 | . 2
⊢ (𝜑 → 𝐺:(-π[,]π)⟶ℂ) | 
| 56 |  | ssid 4005 | . . . 4
⊢ ℂ
⊆ ℂ | 
| 57 |  | cncfss 24926 | . . . 4
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℝ) ⊆ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) | 
| 58 | 23, 56, 57 | mp2an 692 | . . 3
⊢ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℝ) ⊆ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) | 
| 59 | 19 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℝ) | 
| 60 | 1, 2, 18 | fourierdlem15 46142 | . . . . . 6
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(-π[,]π)) | 
| 61 | 60 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π)) | 
| 62 |  | elfzofz 13716 | . . . . . 6
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) | 
| 63 | 62 | adantl 481 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) | 
| 64 | 61, 63 | ffvelcdmd 7104 | . . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ (-π[,]π)) | 
| 65 |  | fzofzp1 13804 | . . . . . 6
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) | 
| 66 | 65 | adantl 481 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) | 
| 67 | 61, 66 | ffvelcdmd 7104 | . . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈
(-π[,]π)) | 
| 68 | 16 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ) | 
| 69 | 7, 2, 6, 15 | fourierdlem12 46139 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ¬ 𝑋 ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) | 
| 70 | 68 | recnd 11290 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ) | 
| 71 | 70 | addlidd 11463 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (0 + 𝑋) = 𝑋) | 
| 72 | 3 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → π ∈
ℝ) | 
| 73 | 72 | renegcld 11691 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -π ∈
ℝ) | 
| 74 | 73, 68 | readdcld 11291 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (-π + 𝑋) ∈ ℝ) | 
| 75 | 72, 68 | readdcld 11291 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (π + 𝑋) ∈ ℝ) | 
| 76 | 74, 75 | iccssred 13475 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ) | 
| 77 | 7, 2, 6 | fourierdlem15 46142 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋))) | 
| 78 | 77 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋))) | 
| 79 | 78, 63 | ffvelcdmd 7104 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) ∈ ((-π + 𝑋)[,](π + 𝑋))) | 
| 80 | 76, 79 | sseldd 3983 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) ∈ ℝ) | 
| 81 | 80, 68 | resubcld 11692 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘𝑖) − 𝑋) ∈ ℝ) | 
| 82 | 17 | fvmpt2 7026 | . . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ ((𝑉‘𝑖) − 𝑋) ∈ ℝ) → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) | 
| 83 | 63, 81, 82 | syl2anc 584 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) | 
| 84 | 83 | oveq1d 7447 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + 𝑋) = (((𝑉‘𝑖) − 𝑋) + 𝑋)) | 
| 85 | 80 | recnd 11290 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) ∈ ℂ) | 
| 86 | 85, 70 | npcand 11625 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑉‘𝑖) − 𝑋) + 𝑋) = (𝑉‘𝑖)) | 
| 87 | 84, 86 | eqtrd 2776 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + 𝑋) = (𝑉‘𝑖)) | 
| 88 |  | fveq2 6905 | . . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑗 → (𝑉‘𝑖) = (𝑉‘𝑗)) | 
| 89 | 88 | oveq1d 7447 | . . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘𝑗) − 𝑋)) | 
| 90 | 89 | cbvmptv 5254 | . . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋)) | 
| 91 | 17, 90 | eqtri 2764 | . . . . . . . . . . . 12
⊢ 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋)) | 
| 92 | 91 | a1i 11 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋))) | 
| 93 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → 𝑗 = (𝑖 + 1)) | 
| 94 | 93 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → (𝑉‘𝑗) = (𝑉‘(𝑖 + 1))) | 
| 95 | 94 | oveq1d 7447 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉‘𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋)) | 
| 96 | 78, 66 | ffvelcdmd 7104 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ((-π + 𝑋)[,](π + 𝑋))) | 
| 97 | 76, 96 | sseldd 3983 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ) | 
| 98 | 97, 68 | resubcld 11692 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ) | 
| 99 | 92, 95, 66, 98 | fvmptd 7022 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋)) | 
| 100 | 99 | oveq1d 7447 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋)) | 
| 101 | 97 | recnd 11290 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℂ) | 
| 102 | 101, 70 | npcand 11625 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋) = (𝑉‘(𝑖 + 1))) | 
| 103 | 100, 102 | eqtrd 2776 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (𝑉‘(𝑖 + 1))) | 
| 104 | 87, 103 | oveq12d 7450 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)) = ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) | 
| 105 | 71, 104 | eleq12d 2834 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((0 + 𝑋) ∈ (((𝑄‘𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)) ↔ 𝑋 ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))) | 
| 106 | 69, 105 | mtbird 325 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ¬ (0 + 𝑋) ∈ (((𝑄‘𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) | 
| 107 |  | 0red 11265 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 0 ∈ ℝ) | 
| 108 | 83, 81 | eqeltrd 2840 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) | 
| 109 | 99, 98 | eqeltrd 2840 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) | 
| 110 | 107, 108,
109, 68 | eliooshift 45524 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (0 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ (0 + 𝑋) ∈ (((𝑄‘𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)))) | 
| 111 | 106, 110 | mtbird 325 | . . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ¬ 0 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) | 
| 112 |  | fourierdlem88.fcn | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) | 
| 113 | 104 | reseq2d 5996 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄‘𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) = (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))) | 
| 114 | 104 | oveq1d 7447 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((((𝑄‘𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ) = (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) | 
| 115 | 112, 113,
114 | 3eltr4d 2855 | . . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄‘𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) ∈ ((((𝑄‘𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ)) | 
| 116 | 31 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑌 ∈ ℝ) | 
| 117 | 41 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ℝ) | 
| 118 | 47 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑁 ∈ ℝ) | 
| 119 | 59, 64, 67, 68, 111, 115, 116, 117, 42, 43, 44, 118, 48, 54 | fourierdlem78 46204 | . . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℝ)) | 
| 120 | 58, 119 | sselid 3980 | . 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) | 
| 121 |  | eqid 2736 | . . . 4
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈‘𝑠)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈‘𝑠)) | 
| 122 |  | eqid 2736 | . . . 4
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆‘𝑠)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆‘𝑠)) | 
| 123 |  | eqid 2736 | . . . 4
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) | 
| 124 | 3 | renegcli 11571 | . . . . . . . . . . 11
⊢ -π
∈ ℝ | 
| 125 | 124 | rexri 11320 | . . . . . . . . . 10
⊢ -π
∈ ℝ* | 
| 126 | 125 | a1i 11 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → -π ∈
ℝ*) | 
| 127 | 3 | rexri 11320 | . . . . . . . . . 10
⊢ π
∈ ℝ* | 
| 128 | 127 | a1i 11 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → π ∈
ℝ*) | 
| 129 | 61 | adantr 480 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(-π[,]π)) | 
| 130 |  | simplr 768 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀)) | 
| 131 | 126, 128,
129, 130 | fourierdlem8 46135 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) | 
| 132 |  | ioossicc 13474 | . . . . . . . . . 10
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) | 
| 133 | 132 | sseli 3978 | . . . . . . . . 9
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) | 
| 134 | 133 | adantl 481 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) | 
| 135 | 131, 134 | sseldd 3983 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ (-π[,]π)) | 
| 136 | 19, 16, 31, 41, 42 | fourierdlem9 46136 | . . . . . . . . . 10
⊢ (𝜑 → 𝐻:(-π[,]π)⟶ℝ) | 
| 137 | 136 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐻:(-π[,]π)⟶ℝ) | 
| 138 | 137, 135 | ffvelcdmd 7104 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻‘𝑠) ∈ ℝ) | 
| 139 | 43 | fourierdlem43 46170 | . . . . . . . . . 10
⊢ 𝐾:(-π[,]π)⟶ℝ | 
| 140 | 139 | a1i 11 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐾:(-π[,]π)⟶ℝ) | 
| 141 | 140, 135 | ffvelcdmd 7104 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐾‘𝑠) ∈ ℝ) | 
| 142 | 138, 141 | remulcld 11292 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐻‘𝑠) · (𝐾‘𝑠)) ∈ ℝ) | 
| 143 | 44 | fvmpt2 7026 | . . . . . . 7
⊢ ((𝑠 ∈ (-π[,]π) ∧
((𝐻‘𝑠) · (𝐾‘𝑠)) ∈ ℝ) → (𝑈‘𝑠) = ((𝐻‘𝑠) · (𝐾‘𝑠))) | 
| 144 | 135, 142,
143 | syl2anc 584 | . . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈‘𝑠) = ((𝐻‘𝑠) · (𝐾‘𝑠))) | 
| 145 | 144, 142 | eqeltrd 2840 | . . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈‘𝑠) ∈ ℝ) | 
| 146 | 145 | recnd 11290 | . . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈‘𝑠) ∈ ℂ) | 
| 147 | 47, 48 | fourierdlem18 46145 | . . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ ((-π[,]π)–cn→ℝ)) | 
| 148 |  | cncff 24920 | . . . . . . . . 9
⊢ (𝑆 ∈
((-π[,]π)–cn→ℝ)
→ 𝑆:(-π[,]π)⟶ℝ) | 
| 149 | 147, 148 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝑆:(-π[,]π)⟶ℝ) | 
| 150 | 149 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑆:(-π[,]π)⟶ℝ) | 
| 151 | 150 | adantr 480 | . . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑆:(-π[,]π)⟶ℝ) | 
| 152 | 151, 135 | ffvelcdmd 7104 | . . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑆‘𝑠) ∈ ℝ) | 
| 153 | 152 | recnd 11290 | . . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑆‘𝑠) ∈ ℂ) | 
| 154 |  | eqid 2736 | . . . . . 6
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠)) | 
| 155 |  | eqid 2736 | . . . . . 6
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾‘𝑠)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾‘𝑠)) | 
| 156 |  | eqid 2736 | . . . . . 6
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) | 
| 157 | 138 | recnd 11290 | . . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻‘𝑠) ∈ ℂ) | 
| 158 | 141 | recnd 11290 | . . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐾‘𝑠) ∈ ℂ) | 
| 159 |  | fourierdlem88.r | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) | 
| 160 |  | fourierdlem88.i | . . . . . . . 8
⊢ 𝐼 = (ℝ D 𝐹) | 
| 161 |  | fourierdlem88.ifn | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) | 
| 162 | 23 | a1i 11 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ℝ ⊆
ℂ) | 
| 163 | 161, 162 | fssd 6752 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ) | 
| 164 |  | fourierdlem88.d | . . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ ((𝐼 ↾ (𝑋(,)+∞)) limℂ 𝑋)) | 
| 165 |  | eqid 2736 | . . . . . . . 8
⊢ if((𝑉‘𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) = if((𝑉‘𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) | 
| 166 | 16, 7, 19, 15, 30, 41, 42, 2, 6, 159, 17, 1, 160, 163, 164, 165 | fourierdlem75 46201 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → if((𝑉‘𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) ∈ ((𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) | 
| 167 | 136 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐻:(-π[,]π)⟶ℝ) | 
| 168 | 125 | a1i 11 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -π ∈
ℝ*) | 
| 169 | 127 | a1i 11 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → π ∈
ℝ*) | 
| 170 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀)) | 
| 171 | 168, 169,
61, 170 | fourierdlem8 46135 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) | 
| 172 | 132, 171 | sstrid 3994 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) | 
| 173 | 167, 172 | feqresmpt 6977 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠))) | 
| 174 | 173 | oveq1d 7447 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠)) limℂ (𝑄‘𝑖))) | 
| 175 | 166, 174 | eleqtrd 2842 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → if((𝑉‘𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠)) limℂ (𝑄‘𝑖))) | 
| 176 |  | limcresi 25921 | . . . . . . . 8
⊢ (𝐾 limℂ (𝑄‘𝑖)) ⊆ ((𝐾 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) | 
| 177 | 43 | fourierdlem62 46188 | . . . . . . . . . 10
⊢ 𝐾 ∈
((-π[,]π)–cn→ℝ) | 
| 178 | 177 | a1i 11 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐾 ∈ ((-π[,]π)–cn→ℝ)) | 
| 179 | 178, 64 | cnlimci 25925 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘𝑖)) ∈ (𝐾 limℂ (𝑄‘𝑖))) | 
| 180 | 176, 179 | sselid 3980 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘𝑖)) ∈ ((𝐾 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) | 
| 181 | 139 | a1i 11 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐾:(-π[,]π)⟶ℝ) | 
| 182 | 181, 172 | feqresmpt 6977 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐾 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾‘𝑠))) | 
| 183 | 182 | oveq1d 7447 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐾 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾‘𝑠)) limℂ (𝑄‘𝑖))) | 
| 184 | 180, 183 | eleqtrd 2842 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘𝑖)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾‘𝑠)) limℂ (𝑄‘𝑖))) | 
| 185 | 154, 155,
156, 157, 158, 175, 184 | mullimc 45636 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (if((𝑉‘𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) · (𝐾‘(𝑄‘𝑖))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) limℂ (𝑄‘𝑖))) | 
| 186 | 144 | eqcomd 2742 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐻‘𝑠) · (𝐾‘𝑠)) = (𝑈‘𝑠)) | 
| 187 | 186 | mpteq2dva 5241 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈‘𝑠))) | 
| 188 | 187 | oveq1d 7447 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) limℂ (𝑄‘𝑖)) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈‘𝑠)) limℂ (𝑄‘𝑖))) | 
| 189 | 185, 188 | eleqtrd 2842 | . . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (if((𝑉‘𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) · (𝐾‘(𝑄‘𝑖))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈‘𝑠)) limℂ (𝑄‘𝑖))) | 
| 190 |  | limcresi 25921 | . . . . . 6
⊢ (𝑆 limℂ (𝑄‘𝑖)) ⊆ ((𝑆 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) | 
| 191 | 147 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑆 ∈ ((-π[,]π)–cn→ℝ)) | 
| 192 | 191, 64 | cnlimci 25925 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘𝑖)) ∈ (𝑆 limℂ (𝑄‘𝑖))) | 
| 193 | 190, 192 | sselid 3980 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘𝑖)) ∈ ((𝑆 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) | 
| 194 | 150, 172 | feqresmpt 6977 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆‘𝑠))) | 
| 195 | 194 | oveq1d 7447 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆‘𝑠)) limℂ (𝑄‘𝑖))) | 
| 196 | 193, 195 | eleqtrd 2842 | . . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘𝑖)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆‘𝑠)) limℂ (𝑄‘𝑖))) | 
| 197 | 121, 122,
123, 146, 153, 189, 196 | mullimc 45636 | . . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((if((𝑉‘𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) · (𝐾‘(𝑄‘𝑖))) · (𝑆‘(𝑄‘𝑖))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) limℂ (𝑄‘𝑖))) | 
| 198 | 52, 54 | fmptd 7133 | . . . . . . 7
⊢ (𝜑 → 𝐺:(-π[,]π)⟶ℝ) | 
| 199 | 198 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐺:(-π[,]π)⟶ℝ) | 
| 200 | 199, 172 | feqresmpt 6977 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺‘𝑠))) | 
| 201 | 145, 152 | remulcld 11292 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑈‘𝑠) · (𝑆‘𝑠)) ∈ ℝ) | 
| 202 | 54 | fvmpt2 7026 | . . . . . . 7
⊢ ((𝑠 ∈ (-π[,]π) ∧
((𝑈‘𝑠) · (𝑆‘𝑠)) ∈ ℝ) → (𝐺‘𝑠) = ((𝑈‘𝑠) · (𝑆‘𝑠))) | 
| 203 | 135, 201,
202 | syl2anc 584 | . . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐺‘𝑠) = ((𝑈‘𝑠) · (𝑆‘𝑠))) | 
| 204 | 203 | mpteq2dva 5241 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺‘𝑠)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠)))) | 
| 205 | 200, 204 | eqtr2d 2777 | . . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) = (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) | 
| 206 | 205 | oveq1d 7447 | . . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) limℂ (𝑄‘𝑖)) = ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) | 
| 207 | 197, 206 | eleqtrd 2842 | . 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((if((𝑉‘𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) · (𝐾‘(𝑄‘𝑖))) · (𝑆‘(𝑄‘𝑖))) ∈ ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) | 
| 208 |  | fourierdlem88.l | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) | 
| 209 |  | fourierdlem88.c | . . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ((𝐼 ↾ (-∞(,)𝑋)) limℂ 𝑋)) | 
| 210 |  | eqid 2736 | . . . . . . . 8
⊢ if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) = if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) | 
| 211 | 16, 7, 19, 15, 31, 40, 42, 2, 6, 208, 17, 1, 160, 161, 209, 210 | fourierdlem74 46200 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ∈ ((𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) | 
| 212 | 173 | oveq1d 7447 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠)) limℂ (𝑄‘(𝑖 + 1)))) | 
| 213 | 211, 212 | eleqtrd 2842 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠)) limℂ (𝑄‘(𝑖 + 1)))) | 
| 214 |  | limcresi 25921 | . . . . . . . 8
⊢ (𝐾 limℂ (𝑄‘(𝑖 + 1))) ⊆ ((𝐾 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) | 
| 215 | 178, 67 | cnlimci 25925 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘(𝑖 + 1))) ∈ (𝐾 limℂ (𝑄‘(𝑖 + 1)))) | 
| 216 | 214, 215 | sselid 3980 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘(𝑖 + 1))) ∈ ((𝐾 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) | 
| 217 | 182 | oveq1d 7447 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐾 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾‘𝑠)) limℂ (𝑄‘(𝑖 + 1)))) | 
| 218 | 216, 217 | eleqtrd 2842 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘(𝑖 + 1))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾‘𝑠)) limℂ (𝑄‘(𝑖 + 1)))) | 
| 219 | 154, 155,
156, 157, 158, 213, 218 | mullimc 45636 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) limℂ (𝑄‘(𝑖 + 1)))) | 
| 220 | 187 | oveq1d 7447 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) limℂ (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈‘𝑠)) limℂ (𝑄‘(𝑖 + 1)))) | 
| 221 | 219, 220 | eleqtrd 2842 | . . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈‘𝑠)) limℂ (𝑄‘(𝑖 + 1)))) | 
| 222 |  | limcresi 25921 | . . . . . 6
⊢ (𝑆 limℂ (𝑄‘(𝑖 + 1))) ⊆ ((𝑆 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) | 
| 223 | 191, 67 | cnlimci 25925 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘(𝑖 + 1))) ∈ (𝑆 limℂ (𝑄‘(𝑖 + 1)))) | 
| 224 | 222, 223 | sselid 3980 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘(𝑖 + 1))) ∈ ((𝑆 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) | 
| 225 | 194 | oveq1d 7447 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆‘𝑠)) limℂ (𝑄‘(𝑖 + 1)))) | 
| 226 | 224, 225 | eleqtrd 2842 | . . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘(𝑖 + 1))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆‘𝑠)) limℂ (𝑄‘(𝑖 + 1)))) | 
| 227 | 121, 122,
123, 146, 153, 221, 226 | mullimc 45636 | . . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) · (𝑆‘(𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) limℂ (𝑄‘(𝑖 + 1)))) | 
| 228 | 205 | oveq1d 7447 | . . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) limℂ (𝑄‘(𝑖 + 1))) = ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) | 
| 229 | 227, 228 | eleqtrd 2842 | . 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) · (𝑆‘(𝑄‘(𝑖 + 1)))) ∈ ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) | 
| 230 | 1, 2, 18, 55, 120, 207, 229 | fourierdlem69 46195 | 1
⊢ (𝜑 → 𝐺 ∈
𝐿1) |