Step | Hyp | Ref
| Expression |
1 | | fourierdlem88.o |
. 2
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
2 | | fourierdlem88.m |
. 2
⊢ (𝜑 → 𝑀 ∈ ℕ) |
3 | | pire 25163 |
. . . . 5
⊢ π
∈ ℝ |
4 | 3 | a1i 11 |
. . . 4
⊢ (𝜑 → π ∈
ℝ) |
5 | 4 | renegcld 11118 |
. . 3
⊢ (𝜑 → -π ∈
ℝ) |
6 | | fourierdlem88.v |
. . . . . . 7
⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) |
7 | | fourierdlem88.1 |
. . . . . . . . 9
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
8 | 7 | fourierdlem2 43152 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
9 | 2, 8 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
10 | 6, 9 | mpbid 235 |
. . . . . 6
⊢ (𝜑 → (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))))) |
11 | 10 | simpld 498 |
. . . . 5
⊢ (𝜑 → 𝑉 ∈ (ℝ ↑m
(0...𝑀))) |
12 | | elmapi 8444 |
. . . . 5
⊢ (𝑉 ∈ (ℝ
↑m (0...𝑀))
→ 𝑉:(0...𝑀)⟶ℝ) |
13 | | frn 6509 |
. . . . 5
⊢ (𝑉:(0...𝑀)⟶ℝ → ran 𝑉 ⊆
ℝ) |
14 | 11, 12, 13 | 3syl 18 |
. . . 4
⊢ (𝜑 → ran 𝑉 ⊆ ℝ) |
15 | | fourierdlem88.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ ran 𝑉) |
16 | 14, 15 | sseldd 3895 |
. . 3
⊢ (𝜑 → 𝑋 ∈ ℝ) |
17 | | fourierdlem88.q |
. . 3
⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) |
18 | 5, 4, 16, 7, 1, 2,
6, 17 | fourierdlem14 43164 |
. 2
⊢ (𝜑 → 𝑄 ∈ (𝑂‘𝑀)) |
19 | | fourierdlem88.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
20 | | ioossre 12853 |
. . . . . . . . . 10
⊢ (𝑋(,)+∞) ⊆
ℝ |
21 | 20 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋(,)+∞) ⊆
ℝ) |
22 | 19, 21 | fssresd 6535 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ) |
23 | | ax-resscn 10645 |
. . . . . . . . 9
⊢ ℝ
⊆ ℂ |
24 | 21, 23 | sstrdi 3906 |
. . . . . . . 8
⊢ (𝜑 → (𝑋(,)+∞) ⊆
ℂ) |
25 | | eqid 2758 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
26 | | pnfxr 10746 |
. . . . . . . . . 10
⊢ +∞
∈ ℝ* |
27 | 26 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → +∞ ∈
ℝ*) |
28 | 16 | ltpnfd 12570 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 < +∞) |
29 | 25, 27, 16, 28 | lptioo1cn 42689 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈
((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞))) |
30 | | fourierdlem88.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
31 | 22, 24, 29, 30 | limcrecl 42672 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ ℝ) |
32 | | ioossre 12853 |
. . . . . . . . . 10
⊢
(-∞(,)𝑋)
⊆ ℝ |
33 | 32 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (-∞(,)𝑋) ⊆
ℝ) |
34 | 19, 33 | fssresd 6535 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ) |
35 | 33, 23 | sstrdi 3906 |
. . . . . . . 8
⊢ (𝜑 → (-∞(,)𝑋) ⊆
ℂ) |
36 | | mnfxr 10749 |
. . . . . . . . . 10
⊢ -∞
∈ ℝ* |
37 | 36 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → -∞ ∈
ℝ*) |
38 | 16 | mnfltd 12573 |
. . . . . . . . 9
⊢ (𝜑 → -∞ < 𝑋) |
39 | 25, 37, 16, 38 | lptioo2cn 42688 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈
((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋))) |
40 | | fourierdlem88.w |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
41 | 34, 35, 39, 40 | limcrecl 42672 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ ℝ) |
42 | | fourierdlem88.h |
. . . . . . 7
⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) |
43 | | fourierdlem88.k |
. . . . . . 7
⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) |
44 | | fourierdlem88.u |
. . . . . . 7
⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) |
45 | 19, 16, 31, 41, 42, 43, 44 | fourierdlem55 43204 |
. . . . . 6
⊢ (𝜑 → 𝑈:(-π[,]π)⟶ℝ) |
46 | 45 | ffvelrnda 6848 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → (𝑈‘𝑠) ∈ ℝ) |
47 | | fourierdlem88.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℝ) |
48 | | fourierdlem88.s |
. . . . . . . 8
⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦
(sin‘((𝑁 + (1 / 2))
· 𝑠))) |
49 | 48 | fourierdlem5 43155 |
. . . . . . 7
⊢ (𝑁 ∈ ℝ → 𝑆:(-π[,]π)⟶ℝ) |
50 | 47, 49 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑆:(-π[,]π)⟶ℝ) |
51 | 50 | ffvelrnda 6848 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → (𝑆‘𝑠) ∈ ℝ) |
52 | 46, 51 | remulcld 10722 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈‘𝑠) · (𝑆‘𝑠)) ∈ ℝ) |
53 | 52 | recnd 10720 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈‘𝑠) · (𝑆‘𝑠)) ∈ ℂ) |
54 | | fourierdlem88.g |
. . 3
⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) |
55 | 53, 54 | fmptd 6875 |
. 2
⊢ (𝜑 → 𝐺:(-π[,]π)⟶ℂ) |
56 | | ssid 3916 |
. . . 4
⊢ ℂ
⊆ ℂ |
57 | | cncfss 23613 |
. . . 4
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℝ) ⊆ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
58 | 23, 56, 57 | mp2an 691 |
. . 3
⊢ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℝ) ⊆ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) |
59 | 19 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℝ) |
60 | 1, 2, 18 | fourierdlem15 43165 |
. . . . . 6
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(-π[,]π)) |
61 | 60 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π)) |
62 | | elfzofz 13115 |
. . . . . 6
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
63 | 62 | adantl 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
64 | 61, 63 | ffvelrnd 6849 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ (-π[,]π)) |
65 | | fzofzp1 13196 |
. . . . . 6
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
66 | 65 | adantl 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
67 | 61, 66 | ffvelrnd 6849 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈
(-π[,]π)) |
68 | 16 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ) |
69 | 7, 2, 6, 15 | fourierdlem12 43162 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ¬ 𝑋 ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) |
70 | 68 | recnd 10720 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ) |
71 | 70 | addid2d 10892 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (0 + 𝑋) = 𝑋) |
72 | 3 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → π ∈
ℝ) |
73 | 72 | renegcld 11118 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -π ∈
ℝ) |
74 | 73, 68 | readdcld 10721 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (-π + 𝑋) ∈ ℝ) |
75 | 72, 68 | readdcld 10721 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (π + 𝑋) ∈ ℝ) |
76 | 74, 75 | iccssred 12879 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ) |
77 | 7, 2, 6 | fourierdlem15 43165 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋))) |
78 | 77 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋))) |
79 | 78, 63 | ffvelrnd 6849 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) ∈ ((-π + 𝑋)[,](π + 𝑋))) |
80 | 76, 79 | sseldd 3895 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) ∈ ℝ) |
81 | 80, 68 | resubcld 11119 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘𝑖) − 𝑋) ∈ ℝ) |
82 | 17 | fvmpt2 6775 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ ((𝑉‘𝑖) − 𝑋) ∈ ℝ) → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
83 | 63, 81, 82 | syl2anc 587 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
84 | 83 | oveq1d 7171 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + 𝑋) = (((𝑉‘𝑖) − 𝑋) + 𝑋)) |
85 | 80 | recnd 10720 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) ∈ ℂ) |
86 | 85, 70 | npcand 11052 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑉‘𝑖) − 𝑋) + 𝑋) = (𝑉‘𝑖)) |
87 | 84, 86 | eqtrd 2793 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + 𝑋) = (𝑉‘𝑖)) |
88 | | fveq2 6663 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑗 → (𝑉‘𝑖) = (𝑉‘𝑗)) |
89 | 88 | oveq1d 7171 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘𝑗) − 𝑋)) |
90 | 89 | cbvmptv 5139 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋)) |
91 | 17, 90 | eqtri 2781 |
. . . . . . . . . . . 12
⊢ 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋)) |
92 | 91 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋))) |
93 | | simpr 488 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → 𝑗 = (𝑖 + 1)) |
94 | 93 | fveq2d 6667 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → (𝑉‘𝑗) = (𝑉‘(𝑖 + 1))) |
95 | 94 | oveq1d 7171 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉‘𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
96 | 78, 66 | ffvelrnd 6849 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ((-π + 𝑋)[,](π + 𝑋))) |
97 | 76, 96 | sseldd 3895 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ) |
98 | 97, 68 | resubcld 11119 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ) |
99 | 92, 95, 66, 98 | fvmptd 6771 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
100 | 99 | oveq1d 7171 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋)) |
101 | 97 | recnd 10720 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℂ) |
102 | 101, 70 | npcand 11052 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋) = (𝑉‘(𝑖 + 1))) |
103 | 100, 102 | eqtrd 2793 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (𝑉‘(𝑖 + 1))) |
104 | 87, 103 | oveq12d 7174 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)) = ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) |
105 | 71, 104 | eleq12d 2846 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((0 + 𝑋) ∈ (((𝑄‘𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)) ↔ 𝑋 ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))) |
106 | 69, 105 | mtbird 328 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ¬ (0 + 𝑋) ∈ (((𝑄‘𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) |
107 | | 0red 10695 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 0 ∈ ℝ) |
108 | 83, 81 | eqeltrd 2852 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
109 | 99, 98 | eqeltrd 2852 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
110 | 107, 108,
109, 68 | eliooshift 42544 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (0 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ (0 + 𝑋) ∈ (((𝑄‘𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)))) |
111 | 106, 110 | mtbird 328 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ¬ 0 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
112 | | fourierdlem88.fcn |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) |
113 | 104 | reseq2d 5828 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄‘𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) = (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))) |
114 | 104 | oveq1d 7171 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((((𝑄‘𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ) = (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) |
115 | 112, 113,
114 | 3eltr4d 2867 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄‘𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) ∈ ((((𝑄‘𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ)) |
116 | 31 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑌 ∈ ℝ) |
117 | 41 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ℝ) |
118 | 47 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑁 ∈ ℝ) |
119 | 59, 64, 67, 68, 111, 115, 116, 117, 42, 43, 44, 118, 48, 54 | fourierdlem78 43227 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℝ)) |
120 | 58, 119 | sseldi 3892 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
121 | | eqid 2758 |
. . . 4
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈‘𝑠)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈‘𝑠)) |
122 | | eqid 2758 |
. . . 4
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆‘𝑠)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆‘𝑠)) |
123 | | eqid 2758 |
. . . 4
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) |
124 | 3 | renegcli 10998 |
. . . . . . . . . . 11
⊢ -π
∈ ℝ |
125 | 124 | rexri 10750 |
. . . . . . . . . 10
⊢ -π
∈ ℝ* |
126 | 125 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → -π ∈
ℝ*) |
127 | 3 | rexri 10750 |
. . . . . . . . . 10
⊢ π
∈ ℝ* |
128 | 127 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → π ∈
ℝ*) |
129 | 61 | adantr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(-π[,]π)) |
130 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀)) |
131 | 126, 128,
129, 130 | fourierdlem8 43158 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
132 | | ioossicc 12878 |
. . . . . . . . . 10
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) |
133 | 132 | sseli 3890 |
. . . . . . . . 9
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
134 | 133 | adantl 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
135 | 131, 134 | sseldd 3895 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ (-π[,]π)) |
136 | 19, 16, 31, 41, 42 | fourierdlem9 43159 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻:(-π[,]π)⟶ℝ) |
137 | 136 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐻:(-π[,]π)⟶ℝ) |
138 | 137, 135 | ffvelrnd 6849 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻‘𝑠) ∈ ℝ) |
139 | 43 | fourierdlem43 43193 |
. . . . . . . . . 10
⊢ 𝐾:(-π[,]π)⟶ℝ |
140 | 139 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐾:(-π[,]π)⟶ℝ) |
141 | 140, 135 | ffvelrnd 6849 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐾‘𝑠) ∈ ℝ) |
142 | 138, 141 | remulcld 10722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐻‘𝑠) · (𝐾‘𝑠)) ∈ ℝ) |
143 | 44 | fvmpt2 6775 |
. . . . . . 7
⊢ ((𝑠 ∈ (-π[,]π) ∧
((𝐻‘𝑠) · (𝐾‘𝑠)) ∈ ℝ) → (𝑈‘𝑠) = ((𝐻‘𝑠) · (𝐾‘𝑠))) |
144 | 135, 142,
143 | syl2anc 587 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈‘𝑠) = ((𝐻‘𝑠) · (𝐾‘𝑠))) |
145 | 144, 142 | eqeltrd 2852 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈‘𝑠) ∈ ℝ) |
146 | 145 | recnd 10720 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈‘𝑠) ∈ ℂ) |
147 | 47, 48 | fourierdlem18 43168 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ ((-π[,]π)–cn→ℝ)) |
148 | | cncff 23607 |
. . . . . . . . 9
⊢ (𝑆 ∈
((-π[,]π)–cn→ℝ)
→ 𝑆:(-π[,]π)⟶ℝ) |
149 | 147, 148 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑆:(-π[,]π)⟶ℝ) |
150 | 149 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑆:(-π[,]π)⟶ℝ) |
151 | 150 | adantr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑆:(-π[,]π)⟶ℝ) |
152 | 151, 135 | ffvelrnd 6849 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑆‘𝑠) ∈ ℝ) |
153 | 152 | recnd 10720 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑆‘𝑠) ∈ ℂ) |
154 | | eqid 2758 |
. . . . . 6
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠)) |
155 | | eqid 2758 |
. . . . . 6
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾‘𝑠)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾‘𝑠)) |
156 | | eqid 2758 |
. . . . . 6
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) |
157 | 138 | recnd 10720 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻‘𝑠) ∈ ℂ) |
158 | 141 | recnd 10720 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐾‘𝑠) ∈ ℂ) |
159 | | fourierdlem88.r |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) |
160 | | fourierdlem88.i |
. . . . . . . 8
⊢ 𝐼 = (ℝ D 𝐹) |
161 | | fourierdlem88.ifn |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) |
162 | 23 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ℝ ⊆
ℂ) |
163 | 161, 162 | fssd 6518 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ) |
164 | | fourierdlem88.d |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ ((𝐼 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
165 | | eqid 2758 |
. . . . . . . 8
⊢ if((𝑉‘𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) = if((𝑉‘𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) |
166 | 16, 7, 19, 15, 30, 41, 42, 2, 6, 159, 17, 1, 160, 163, 164, 165 | fourierdlem75 43224 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → if((𝑉‘𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) ∈ ((𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
167 | 136 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐻:(-π[,]π)⟶ℝ) |
168 | 125 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -π ∈
ℝ*) |
169 | 127 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → π ∈
ℝ*) |
170 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀)) |
171 | 168, 169,
61, 170 | fourierdlem8 43158 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
172 | 132, 171 | sstrid 3905 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
173 | 167, 172 | feqresmpt 6727 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠))) |
174 | 173 | oveq1d 7171 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠)) limℂ (𝑄‘𝑖))) |
175 | 166, 174 | eleqtrd 2854 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → if((𝑉‘𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠)) limℂ (𝑄‘𝑖))) |
176 | | limcresi 24597 |
. . . . . . . 8
⊢ (𝐾 limℂ (𝑄‘𝑖)) ⊆ ((𝐾 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) |
177 | 43 | fourierdlem62 43211 |
. . . . . . . . . 10
⊢ 𝐾 ∈
((-π[,]π)–cn→ℝ) |
178 | 177 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐾 ∈ ((-π[,]π)–cn→ℝ)) |
179 | 178, 64 | cnlimci 24601 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘𝑖)) ∈ (𝐾 limℂ (𝑄‘𝑖))) |
180 | 176, 179 | sseldi 3892 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘𝑖)) ∈ ((𝐾 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
181 | 139 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐾:(-π[,]π)⟶ℝ) |
182 | 181, 172 | feqresmpt 6727 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐾 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾‘𝑠))) |
183 | 182 | oveq1d 7171 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐾 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾‘𝑠)) limℂ (𝑄‘𝑖))) |
184 | 180, 183 | eleqtrd 2854 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘𝑖)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾‘𝑠)) limℂ (𝑄‘𝑖))) |
185 | 154, 155,
156, 157, 158, 175, 184 | mullimc 42659 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (if((𝑉‘𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) · (𝐾‘(𝑄‘𝑖))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) limℂ (𝑄‘𝑖))) |
186 | 144 | eqcomd 2764 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐻‘𝑠) · (𝐾‘𝑠)) = (𝑈‘𝑠)) |
187 | 186 | mpteq2dva 5131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈‘𝑠))) |
188 | 187 | oveq1d 7171 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) limℂ (𝑄‘𝑖)) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈‘𝑠)) limℂ (𝑄‘𝑖))) |
189 | 185, 188 | eleqtrd 2854 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (if((𝑉‘𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) · (𝐾‘(𝑄‘𝑖))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈‘𝑠)) limℂ (𝑄‘𝑖))) |
190 | | limcresi 24597 |
. . . . . 6
⊢ (𝑆 limℂ (𝑄‘𝑖)) ⊆ ((𝑆 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) |
191 | 147 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑆 ∈ ((-π[,]π)–cn→ℝ)) |
192 | 191, 64 | cnlimci 24601 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘𝑖)) ∈ (𝑆 limℂ (𝑄‘𝑖))) |
193 | 190, 192 | sseldi 3892 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘𝑖)) ∈ ((𝑆 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
194 | 150, 172 | feqresmpt 6727 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆‘𝑠))) |
195 | 194 | oveq1d 7171 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆‘𝑠)) limℂ (𝑄‘𝑖))) |
196 | 193, 195 | eleqtrd 2854 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘𝑖)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆‘𝑠)) limℂ (𝑄‘𝑖))) |
197 | 121, 122,
123, 146, 153, 189, 196 | mullimc 42659 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((if((𝑉‘𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) · (𝐾‘(𝑄‘𝑖))) · (𝑆‘(𝑄‘𝑖))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) limℂ (𝑄‘𝑖))) |
198 | 52, 54 | fmptd 6875 |
. . . . . . 7
⊢ (𝜑 → 𝐺:(-π[,]π)⟶ℝ) |
199 | 198 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐺:(-π[,]π)⟶ℝ) |
200 | 199, 172 | feqresmpt 6727 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺‘𝑠))) |
201 | 145, 152 | remulcld 10722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑈‘𝑠) · (𝑆‘𝑠)) ∈ ℝ) |
202 | 54 | fvmpt2 6775 |
. . . . . . 7
⊢ ((𝑠 ∈ (-π[,]π) ∧
((𝑈‘𝑠) · (𝑆‘𝑠)) ∈ ℝ) → (𝐺‘𝑠) = ((𝑈‘𝑠) · (𝑆‘𝑠))) |
203 | 135, 201,
202 | syl2anc 587 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐺‘𝑠) = ((𝑈‘𝑠) · (𝑆‘𝑠))) |
204 | 203 | mpteq2dva 5131 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐺‘𝑠)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠)))) |
205 | 200, 204 | eqtr2d 2794 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) = (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
206 | 205 | oveq1d 7171 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) limℂ (𝑄‘𝑖)) = ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
207 | 197, 206 | eleqtrd 2854 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((if((𝑉‘𝑖) = 𝑋, 𝐷, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) · (𝐾‘(𝑄‘𝑖))) · (𝑆‘(𝑄‘𝑖))) ∈ ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
208 | | fourierdlem88.l |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) |
209 | | fourierdlem88.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ((𝐼 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
210 | | eqid 2758 |
. . . . . . . 8
⊢ if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) = if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) |
211 | 16, 7, 19, 15, 31, 40, 42, 2, 6, 208, 17, 1, 160, 161, 209, 210 | fourierdlem74 43223 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ∈ ((𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
212 | 173 | oveq1d 7171 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠)) limℂ (𝑄‘(𝑖 + 1)))) |
213 | 211, 212 | eleqtrd 2854 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠)) limℂ (𝑄‘(𝑖 + 1)))) |
214 | | limcresi 24597 |
. . . . . . . 8
⊢ (𝐾 limℂ (𝑄‘(𝑖 + 1))) ⊆ ((𝐾 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) |
215 | 178, 67 | cnlimci 24601 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘(𝑖 + 1))) ∈ (𝐾 limℂ (𝑄‘(𝑖 + 1)))) |
216 | 214, 215 | sseldi 3892 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘(𝑖 + 1))) ∈ ((𝐾 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
217 | 182 | oveq1d 7171 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐾 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾‘𝑠)) limℂ (𝑄‘(𝑖 + 1)))) |
218 | 216, 217 | eleqtrd 2854 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘(𝑖 + 1))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾‘𝑠)) limℂ (𝑄‘(𝑖 + 1)))) |
219 | 154, 155,
156, 157, 158, 213, 218 | mullimc 42659 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) limℂ (𝑄‘(𝑖 + 1)))) |
220 | 187 | oveq1d 7171 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) limℂ (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈‘𝑠)) limℂ (𝑄‘(𝑖 + 1)))) |
221 | 219, 220 | eleqtrd 2854 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈‘𝑠)) limℂ (𝑄‘(𝑖 + 1)))) |
222 | | limcresi 24597 |
. . . . . 6
⊢ (𝑆 limℂ (𝑄‘(𝑖 + 1))) ⊆ ((𝑆 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) |
223 | 191, 67 | cnlimci 24601 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘(𝑖 + 1))) ∈ (𝑆 limℂ (𝑄‘(𝑖 + 1)))) |
224 | 222, 223 | sseldi 3892 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘(𝑖 + 1))) ∈ ((𝑆 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
225 | 194 | oveq1d 7171 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆‘𝑠)) limℂ (𝑄‘(𝑖 + 1)))) |
226 | 224, 225 | eleqtrd 2854 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘(𝑖 + 1))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆‘𝑠)) limℂ (𝑄‘(𝑖 + 1)))) |
227 | 121, 122,
123, 146, 153, 221, 226 | mullimc 42659 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) · (𝑆‘(𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) limℂ (𝑄‘(𝑖 + 1)))) |
228 | 205 | oveq1d 7171 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) limℂ (𝑄‘(𝑖 + 1))) = ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
229 | 227, 228 | eleqtrd 2854 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐶, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) · (𝐾‘(𝑄‘(𝑖 + 1)))) · (𝑆‘(𝑄‘(𝑖 + 1)))) ∈ ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
230 | 1, 2, 18, 55, 120, 207, 229 | fourierdlem69 43218 |
1
⊢ (𝜑 → 𝐺 ∈
𝐿1) |