MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrre Structured version   Visualization version   GIF version

Theorem supxrre 13309
Description: The real and extended real suprema match when the real supremum exists. (Contributed by NM, 18-Oct-2005.) (Proof shortened by Mario Carneiro, 7-Sep-2014.)
Assertion
Ref Expression
supxrre ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, < ))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem supxrre
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → 𝐴 ⊆ ℝ)
2 ressxr 11259 . . . 4 ℝ ⊆ ℝ*
31, 2sstrdi 3989 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → 𝐴 ⊆ ℝ*)
4 supxrcl 13297 . . 3 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
53, 4syl 17 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
6 suprcl 12175 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
76rexrd 11265 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ*)
86leidd 11781 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ))
9 suprleub 12181 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ sup(𝐴, ℝ, < ) ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝑧 ≤ sup(𝐴, ℝ, < )))
106, 9mpdan 684 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝑧 ≤ sup(𝐴, ℝ, < )))
11 supxrleub 13308 . . . . 5 ((𝐴 ⊆ ℝ* ∧ sup(𝐴, ℝ, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝑧 ≤ sup(𝐴, ℝ, < )))
123, 7, 11syl2anc 583 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝑧 ≤ sup(𝐴, ℝ, < )))
1310, 12bitr4d 282 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < )))
148, 13mpbid 231 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ))
155xrleidd 13134 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ))
16 supxrleub 13308 . . . . 5 ((𝐴 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐴, ℝ*, < )))
173, 5, 16syl2anc 583 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐴, ℝ*, < )))
18 simp2 1134 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → 𝐴 ≠ ∅)
19 n0 4341 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
2018, 19sylib 217 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑧 𝑧𝐴)
21 mnfxr 11272 . . . . . . . . 9 -∞ ∈ ℝ*
2221a1i 11 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → -∞ ∈ ℝ*)
231sselda 3977 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
2423rexrd 11265 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ*)
255adantr 480 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
2623mnfltd 13107 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → -∞ < 𝑧)
27 supxrub 13306 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝑧𝐴) → 𝑧 ≤ sup(𝐴, ℝ*, < ))
283, 27sylan 579 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → 𝑧 ≤ sup(𝐴, ℝ*, < ))
2922, 24, 25, 26, 28xrltletrd 13143 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → -∞ < sup(𝐴, ℝ*, < ))
3020, 29exlimddv 1930 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → -∞ < sup(𝐴, ℝ*, < ))
31 xrre 13151 . . . . . 6 (((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐴, ℝ, < ) ∈ ℝ) ∧ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ))) → sup(𝐴, ℝ*, < ) ∈ ℝ)
325, 6, 30, 14, 31syl22anc 836 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ∈ ℝ)
33 suprleub 12181 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐴, ℝ*, < )))
3432, 33mpdan 684 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐴, ℝ*, < )))
3517, 34bitr4d 282 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ) ↔ sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < )))
3615, 35mpbid 231 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < ))
375, 7, 14, 36xrletrid 13137 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wex 1773  wcel 2098  wne 2934  wral 3055  wrex 3064  wss 3943  c0 4317   class class class wbr 5141  supcsup 9434  cr 11108  -∞cmnf 11247  *cxr 11248   < clt 11249  cle 11250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448
This theorem is referenced by:  supxrbnd  13310  ovoliunlem1  25382  ovoliun2  25386  ioombl1lem4  25441  uniioombllem2  25463  uniioombllem6  25468  itg1climres  25595  itg2monolem1  25631  itg2i1fseq2  25637  nmcexi  31784  itg2addnc  37053  supxrrernmpt  44684  supminfxr  44727  sge0supre  45658  sge0reuzb  45717
  Copyright terms: Public domain W3C validator