| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1136 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → 𝐴 ⊆ ℝ) |
| 2 | | ressxr 11284 |
. . . 4
⊢ ℝ
⊆ ℝ* |
| 3 | 1, 2 | sstrdi 3976 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → 𝐴 ⊆
ℝ*) |
| 4 | | supxrcl 13336 |
. . 3
⊢ (𝐴 ⊆ ℝ*
→ sup(𝐴,
ℝ*, < ) ∈ ℝ*) |
| 5 | 3, 4 | syl 17 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ*, < ) ∈
ℝ*) |
| 6 | | suprcl 12207 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈
ℝ) |
| 7 | 6 | rexrd 11290 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈
ℝ*) |
| 8 | 6 | leidd 11808 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < )) |
| 9 | | suprleub 12213 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ sup(𝐴, ℝ, < ) ∈ ℝ) →
(sup(𝐴, ℝ, < )
≤ sup(𝐴, ℝ, < )
↔ ∀𝑧 ∈
𝐴 𝑧 ≤ sup(𝐴, ℝ, < ))) |
| 10 | 6, 9 | mpdan 687 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ sup(𝐴, ℝ, < ))) |
| 11 | | supxrleub 13347 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ*
∧ sup(𝐴, ℝ, <
) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ) ↔
∀𝑧 ∈ 𝐴 𝑧 ≤ sup(𝐴, ℝ, < ))) |
| 12 | 3, 7, 11 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ) ↔
∀𝑧 ∈ 𝐴 𝑧 ≤ sup(𝐴, ℝ, < ))) |
| 13 | 10, 12 | bitr4d 282 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ*, < )
≤ sup(𝐴, ℝ, <
))) |
| 14 | 8, 13 | mpbid 232 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, <
)) |
| 15 | 5 | xrleidd 13173 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, <
)) |
| 16 | | supxrleub 13347 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ*
∧ sup(𝐴,
ℝ*, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < )
≤ sup(𝐴,
ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ sup(𝐴, ℝ*, <
))) |
| 17 | 3, 5, 16 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < )
↔ ∀𝑥 ∈
𝐴 𝑥 ≤ sup(𝐴, ℝ*, <
))) |
| 18 | | simp2 1137 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → 𝐴 ≠ ∅) |
| 19 | | n0 4333 |
. . . . . . . 8
⊢ (𝐴 ≠ ∅ ↔
∃𝑧 𝑧 ∈ 𝐴) |
| 20 | 18, 19 | sylib 218 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑧 𝑧 ∈ 𝐴) |
| 21 | | mnfxr 11297 |
. . . . . . . . 9
⊢ -∞
∈ ℝ* |
| 22 | 21 | a1i 11 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ 𝐴) → -∞ ∈
ℝ*) |
| 23 | 1 | sselda 3963 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ) |
| 24 | 23 | rexrd 11290 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ*) |
| 25 | 5 | adantr 480 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ 𝐴) → sup(𝐴, ℝ*, < ) ∈
ℝ*) |
| 26 | 23 | mnfltd 13145 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ 𝐴) → -∞ < 𝑧) |
| 27 | | supxrub 13345 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ sup(𝐴, ℝ*, <
)) |
| 28 | 3, 27 | sylan 580 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ sup(𝐴, ℝ*, <
)) |
| 29 | 22, 24, 25, 26, 28 | xrltletrd 13182 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ 𝐴) → -∞ < sup(𝐴, ℝ*, <
)) |
| 30 | 20, 29 | exlimddv 1935 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → -∞ < sup(𝐴, ℝ*, <
)) |
| 31 | | xrre 13190 |
. . . . . 6
⊢
(((sup(𝐴,
ℝ*, < ) ∈ ℝ* ∧ sup(𝐴, ℝ, < ) ∈
ℝ) ∧ (-∞ < sup(𝐴, ℝ*, < ) ∧
sup(𝐴, ℝ*,
< ) ≤ sup(𝐴, ℝ,
< ))) → sup(𝐴,
ℝ*, < ) ∈ ℝ) |
| 32 | 5, 6, 30, 14, 31 | syl22anc 838 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ*, < ) ∈
ℝ) |
| 33 | | suprleub 12213 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ sup(𝐴, ℝ*, < ) ∈
ℝ) → (sup(𝐴,
ℝ, < ) ≤ sup(𝐴,
ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ sup(𝐴, ℝ*, <
))) |
| 34 | 32, 33 | mpdan 687 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < ) ↔
∀𝑥 ∈ 𝐴 𝑥 ≤ sup(𝐴, ℝ*, <
))) |
| 35 | 17, 34 | bitr4d 282 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < )
↔ sup(𝐴, ℝ, <
) ≤ sup(𝐴,
ℝ*, < ))) |
| 36 | 15, 35 | mpbid 232 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, <
)) |
| 37 | 5, 7, 14, 36 | xrletrid 13176 |
1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, <
)) |