| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1 1136 | . . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → 𝐴 ⊆ ℝ) | 
| 2 |  | ressxr 11306 | . . . 4
⊢ ℝ
⊆ ℝ* | 
| 3 | 1, 2 | sstrdi 3995 | . . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → 𝐴 ⊆
ℝ*) | 
| 4 |  | supxrcl 13358 | . . 3
⊢ (𝐴 ⊆ ℝ*
→ sup(𝐴,
ℝ*, < ) ∈ ℝ*) | 
| 5 | 3, 4 | syl 17 | . 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ*, < ) ∈
ℝ*) | 
| 6 |  | suprcl 12229 | . . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈
ℝ) | 
| 7 | 6 | rexrd 11312 | . 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈
ℝ*) | 
| 8 | 6 | leidd 11830 | . . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < )) | 
| 9 |  | suprleub 12235 | . . . . 5
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ sup(𝐴, ℝ, < ) ∈ ℝ) →
(sup(𝐴, ℝ, < )
≤ sup(𝐴, ℝ, < )
↔ ∀𝑧 ∈
𝐴 𝑧 ≤ sup(𝐴, ℝ, < ))) | 
| 10 | 6, 9 | mpdan 687 | . . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ sup(𝐴, ℝ, < ))) | 
| 11 |  | supxrleub 13369 | . . . . 5
⊢ ((𝐴 ⊆ ℝ*
∧ sup(𝐴, ℝ, <
) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ) ↔
∀𝑧 ∈ 𝐴 𝑧 ≤ sup(𝐴, ℝ, < ))) | 
| 12 | 3, 7, 11 | syl2anc 584 | . . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ) ↔
∀𝑧 ∈ 𝐴 𝑧 ≤ sup(𝐴, ℝ, < ))) | 
| 13 | 10, 12 | bitr4d 282 | . . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ*, < )
≤ sup(𝐴, ℝ, <
))) | 
| 14 | 8, 13 | mpbid 232 | . 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, <
)) | 
| 15 | 5 | xrleidd 13195 | . . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, <
)) | 
| 16 |  | supxrleub 13369 | . . . . 5
⊢ ((𝐴 ⊆ ℝ*
∧ sup(𝐴,
ℝ*, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < )
≤ sup(𝐴,
ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ sup(𝐴, ℝ*, <
))) | 
| 17 | 3, 5, 16 | syl2anc 584 | . . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < )
↔ ∀𝑥 ∈
𝐴 𝑥 ≤ sup(𝐴, ℝ*, <
))) | 
| 18 |  | simp2 1137 | . . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → 𝐴 ≠ ∅) | 
| 19 |  | n0 4352 | . . . . . . . 8
⊢ (𝐴 ≠ ∅ ↔
∃𝑧 𝑧 ∈ 𝐴) | 
| 20 | 18, 19 | sylib 218 | . . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑧 𝑧 ∈ 𝐴) | 
| 21 |  | mnfxr 11319 | . . . . . . . . 9
⊢ -∞
∈ ℝ* | 
| 22 | 21 | a1i 11 | . . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ 𝐴) → -∞ ∈
ℝ*) | 
| 23 | 1 | sselda 3982 | . . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ) | 
| 24 | 23 | rexrd 11312 | . . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ*) | 
| 25 | 5 | adantr 480 | . . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ 𝐴) → sup(𝐴, ℝ*, < ) ∈
ℝ*) | 
| 26 | 23 | mnfltd 13167 | . . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ 𝐴) → -∞ < 𝑧) | 
| 27 |  | supxrub 13367 | . . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ sup(𝐴, ℝ*, <
)) | 
| 28 | 3, 27 | sylan 580 | . . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ sup(𝐴, ℝ*, <
)) | 
| 29 | 22, 24, 25, 26, 28 | xrltletrd 13204 | . . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ 𝐴) → -∞ < sup(𝐴, ℝ*, <
)) | 
| 30 | 20, 29 | exlimddv 1934 | . . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → -∞ < sup(𝐴, ℝ*, <
)) | 
| 31 |  | xrre 13212 | . . . . . 6
⊢
(((sup(𝐴,
ℝ*, < ) ∈ ℝ* ∧ sup(𝐴, ℝ, < ) ∈
ℝ) ∧ (-∞ < sup(𝐴, ℝ*, < ) ∧
sup(𝐴, ℝ*,
< ) ≤ sup(𝐴, ℝ,
< ))) → sup(𝐴,
ℝ*, < ) ∈ ℝ) | 
| 32 | 5, 6, 30, 14, 31 | syl22anc 838 | . . . . 5
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ*, < ) ∈
ℝ) | 
| 33 |  | suprleub 12235 | . . . . 5
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ sup(𝐴, ℝ*, < ) ∈
ℝ) → (sup(𝐴,
ℝ, < ) ≤ sup(𝐴,
ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ sup(𝐴, ℝ*, <
))) | 
| 34 | 32, 33 | mpdan 687 | . . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < ) ↔
∀𝑥 ∈ 𝐴 𝑥 ≤ sup(𝐴, ℝ*, <
))) | 
| 35 | 17, 34 | bitr4d 282 | . . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < )
↔ sup(𝐴, ℝ, <
) ≤ sup(𝐴,
ℝ*, < ))) | 
| 36 | 15, 35 | mpbid 232 | . 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, <
)) | 
| 37 | 5, 7, 14, 36 | xrletrid 13198 | 1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, <
)) |