MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrre Structured version   Visualization version   GIF version

Theorem supxrre 13348
Description: The real and extended real suprema match when the real supremum exists. (Contributed by NM, 18-Oct-2005.) (Proof shortened by Mario Carneiro, 7-Sep-2014.)
Assertion
Ref Expression
supxrre ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, < ))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem supxrre
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → 𝐴 ⊆ ℝ)
2 ressxr 11284 . . . 4 ℝ ⊆ ℝ*
31, 2sstrdi 3976 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → 𝐴 ⊆ ℝ*)
4 supxrcl 13336 . . 3 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
53, 4syl 17 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
6 suprcl 12207 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
76rexrd 11290 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ*)
86leidd 11808 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ))
9 suprleub 12213 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ sup(𝐴, ℝ, < ) ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝑧 ≤ sup(𝐴, ℝ, < )))
106, 9mpdan 687 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝑧 ≤ sup(𝐴, ℝ, < )))
11 supxrleub 13347 . . . . 5 ((𝐴 ⊆ ℝ* ∧ sup(𝐴, ℝ, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝑧 ≤ sup(𝐴, ℝ, < )))
123, 7, 11syl2anc 584 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝑧 ≤ sup(𝐴, ℝ, < )))
1310, 12bitr4d 282 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < )))
148, 13mpbid 232 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ))
155xrleidd 13173 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ))
16 supxrleub 13347 . . . . 5 ((𝐴 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐴, ℝ*, < )))
173, 5, 16syl2anc 584 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐴, ℝ*, < )))
18 simp2 1137 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → 𝐴 ≠ ∅)
19 n0 4333 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
2018, 19sylib 218 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑧 𝑧𝐴)
21 mnfxr 11297 . . . . . . . . 9 -∞ ∈ ℝ*
2221a1i 11 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → -∞ ∈ ℝ*)
231sselda 3963 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
2423rexrd 11290 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ*)
255adantr 480 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
2623mnfltd 13145 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → -∞ < 𝑧)
27 supxrub 13345 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝑧𝐴) → 𝑧 ≤ sup(𝐴, ℝ*, < ))
283, 27sylan 580 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → 𝑧 ≤ sup(𝐴, ℝ*, < ))
2922, 24, 25, 26, 28xrltletrd 13182 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → -∞ < sup(𝐴, ℝ*, < ))
3020, 29exlimddv 1935 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → -∞ < sup(𝐴, ℝ*, < ))
31 xrre 13190 . . . . . 6 (((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐴, ℝ, < ) ∈ ℝ) ∧ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ))) → sup(𝐴, ℝ*, < ) ∈ ℝ)
325, 6, 30, 14, 31syl22anc 838 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ∈ ℝ)
33 suprleub 12213 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐴, ℝ*, < )))
3432, 33mpdan 687 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐴, ℝ*, < )))
3517, 34bitr4d 282 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ) ↔ sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < )))
3615, 35mpbid 232 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < ))
375, 7, 14, 36xrletrid 13176 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  wrex 3061  wss 3931  c0 4313   class class class wbr 5124  supcsup 9457  cr 11133  -∞cmnf 11272  *cxr 11273   < clt 11274  cle 11275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474
This theorem is referenced by:  supxrbnd  13349  ovoliunlem1  25460  ovoliun2  25464  ioombl1lem4  25519  uniioombllem2  25541  uniioombllem6  25546  itg1climres  25672  itg2monolem1  25708  itg2i1fseq2  25714  nmcexi  32012  itg2addnc  37703  supxrrernmpt  45428  supminfxr  45471  sge0supre  46398  sge0reuzb  46457
  Copyright terms: Public domain W3C validator