MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrre Structured version   Visualization version   GIF version

Theorem supxrre 13230
Description: The real and extended real suprema match when the real supremum exists. (Contributed by NM, 18-Oct-2005.) (Proof shortened by Mario Carneiro, 7-Sep-2014.)
Assertion
Ref Expression
supxrre ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, < ))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem supxrre
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → 𝐴 ⊆ ℝ)
2 ressxr 11165 . . . 4 ℝ ⊆ ℝ*
31, 2sstrdi 3943 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → 𝐴 ⊆ ℝ*)
4 supxrcl 13218 . . 3 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
53, 4syl 17 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
6 suprcl 12091 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
76rexrd 11171 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ*)
86leidd 11692 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ))
9 suprleub 12097 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ sup(𝐴, ℝ, < ) ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝑧 ≤ sup(𝐴, ℝ, < )))
106, 9mpdan 687 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝑧 ≤ sup(𝐴, ℝ, < )))
11 supxrleub 13229 . . . . 5 ((𝐴 ⊆ ℝ* ∧ sup(𝐴, ℝ, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝑧 ≤ sup(𝐴, ℝ, < )))
123, 7, 11syl2anc 584 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝑧 ≤ sup(𝐴, ℝ, < )))
1310, 12bitr4d 282 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < )))
148, 13mpbid 232 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ))
155xrleidd 13055 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ))
16 supxrleub 13229 . . . . 5 ((𝐴 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐴, ℝ*, < )))
173, 5, 16syl2anc 584 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐴, ℝ*, < )))
18 simp2 1137 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → 𝐴 ≠ ∅)
19 n0 4302 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
2018, 19sylib 218 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑧 𝑧𝐴)
21 mnfxr 11178 . . . . . . . . 9 -∞ ∈ ℝ*
2221a1i 11 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → -∞ ∈ ℝ*)
231sselda 3930 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
2423rexrd 11171 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ*)
255adantr 480 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
2623mnfltd 13027 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → -∞ < 𝑧)
27 supxrub 13227 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝑧𝐴) → 𝑧 ≤ sup(𝐴, ℝ*, < ))
283, 27sylan 580 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → 𝑧 ≤ sup(𝐴, ℝ*, < ))
2922, 24, 25, 26, 28xrltletrd 13064 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑧𝐴) → -∞ < sup(𝐴, ℝ*, < ))
3020, 29exlimddv 1936 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → -∞ < sup(𝐴, ℝ*, < ))
31 xrre 13072 . . . . . 6 (((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐴, ℝ, < ) ∈ ℝ) ∧ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ, < ))) → sup(𝐴, ℝ*, < ) ∈ ℝ)
325, 6, 30, 14, 31syl22anc 838 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ∈ ℝ)
33 suprleub 12097 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐴, ℝ*, < )))
3432, 33mpdan 687 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐴, ℝ*, < )))
3517, 34bitr4d 282 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ) ↔ sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < )))
3615, 35mpbid 232 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ≤ sup(𝐴, ℝ*, < ))
375, 7, 14, 36xrletrid 13058 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wne 2929  wral 3048  wrex 3057  wss 3898  c0 4282   class class class wbr 5095  supcsup 9333  cr 11014  -∞cmnf 11153  *cxr 11154   < clt 11155  cle 11156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356
This theorem is referenced by:  supxrbnd  13231  ovoliunlem1  25433  ovoliun2  25437  ioombl1lem4  25492  uniioombllem2  25514  uniioombllem6  25519  itg1climres  25645  itg2monolem1  25681  itg2i1fseq2  25687  nmcexi  32010  itg2addnc  37737  supxrrernmpt  45546  supminfxr  45589  sge0supre  46514  sge0reuzb  46573
  Copyright terms: Public domain W3C validator