MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatopth2 Structured version   Visualization version   GIF version

Theorem ccatopth2 14430
Description: An opth 5391-like theorem for recovering the two halves of a concatenated word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
ccatopth2 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem ccatopth2
StepHypRef Expression
1 fveq2 6774 . . . 4 ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → (♯‘(𝐴 ++ 𝐵)) = (♯‘(𝐶 ++ 𝐷)))
2 ccatlen 14278 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
323ad2ant1 1132 . . . . . . 7 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
4 simp3 1137 . . . . . . . 8 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘𝐵) = (♯‘𝐷))
54oveq2d 7291 . . . . . . 7 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝐴) + (♯‘𝐷)))
63, 5eqtrd 2778 . . . . . 6 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐷)))
7 ccatlen 14278 . . . . . . 7 ((𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) → (♯‘(𝐶 ++ 𝐷)) = ((♯‘𝐶) + (♯‘𝐷)))
873ad2ant2 1133 . . . . . 6 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘(𝐶 ++ 𝐷)) = ((♯‘𝐶) + (♯‘𝐷)))
96, 8eqeq12d 2754 . . . . 5 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → ((♯‘(𝐴 ++ 𝐵)) = (♯‘(𝐶 ++ 𝐷)) ↔ ((♯‘𝐴) + (♯‘𝐷)) = ((♯‘𝐶) + (♯‘𝐷))))
10 simp1l 1196 . . . . . . . 8 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → 𝐴 ∈ Word 𝑋)
11 lencl 14236 . . . . . . . 8 (𝐴 ∈ Word 𝑋 → (♯‘𝐴) ∈ ℕ0)
1210, 11syl 17 . . . . . . 7 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘𝐴) ∈ ℕ0)
1312nn0cnd 12295 . . . . . 6 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘𝐴) ∈ ℂ)
14 simp2l 1198 . . . . . . . 8 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → 𝐶 ∈ Word 𝑋)
15 lencl 14236 . . . . . . . 8 (𝐶 ∈ Word 𝑋 → (♯‘𝐶) ∈ ℕ0)
1614, 15syl 17 . . . . . . 7 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘𝐶) ∈ ℕ0)
1716nn0cnd 12295 . . . . . 6 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘𝐶) ∈ ℂ)
18 simp2r 1199 . . . . . . . 8 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → 𝐷 ∈ Word 𝑋)
19 lencl 14236 . . . . . . . 8 (𝐷 ∈ Word 𝑋 → (♯‘𝐷) ∈ ℕ0)
2018, 19syl 17 . . . . . . 7 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘𝐷) ∈ ℕ0)
2120nn0cnd 12295 . . . . . 6 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘𝐷) ∈ ℂ)
2213, 17, 21addcan2d 11179 . . . . 5 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (((♯‘𝐴) + (♯‘𝐷)) = ((♯‘𝐶) + (♯‘𝐷)) ↔ (♯‘𝐴) = (♯‘𝐶)))
239, 22bitrd 278 . . . 4 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → ((♯‘(𝐴 ++ 𝐵)) = (♯‘(𝐶 ++ 𝐷)) ↔ (♯‘𝐴) = (♯‘𝐶)))
241, 23syl5ib 243 . . 3 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → (♯‘𝐴) = (♯‘𝐶)))
25 ccatopth 14429 . . . . . . 7 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
2625biimpd 228 . . . . . 6 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
27263expia 1120 . . . . 5 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋)) → ((♯‘𝐴) = (♯‘𝐶) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))))
2827com23 86 . . . 4 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → ((♯‘𝐴) = (♯‘𝐶) → (𝐴 = 𝐶𝐵 = 𝐷))))
29283adant3 1131 . . 3 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → ((♯‘𝐴) = (♯‘𝐶) → (𝐴 = 𝐶𝐵 = 𝐷))))
3024, 29mpdd 43 . 2 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
31 oveq12 7284 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷))
3230, 31impbid1 224 1 (((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275   + caddc 10874  0cn0 12233  chash 14044  Word cword 14217   ++ cconcat 14273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-substr 14354  df-pfx 14384
This theorem is referenced by:  ccatrcan  14432
  Copyright terms: Public domain W3C validator