| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptscmfsuppd | Structured version Visualization version GIF version | ||
| Description: A function mapping to a scalar product in which one factor is finitely supported is finitely supported. Formerly part of proof for ply1coe 22211. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 8-Aug-2019.) (Proof shortened by AV, 18-Oct-2019.) |
| Ref | Expression |
|---|---|
| mptscmfsuppd.b | ⊢ 𝐵 = (Base‘𝑃) |
| mptscmfsuppd.s | ⊢ 𝑆 = (Scalar‘𝑃) |
| mptscmfsuppd.n | ⊢ · = ( ·𝑠 ‘𝑃) |
| mptscmfsuppd.p | ⊢ (𝜑 → 𝑃 ∈ LMod) |
| mptscmfsuppd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| mptscmfsuppd.z | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑍 ∈ 𝐵) |
| mptscmfsuppd.a | ⊢ (𝜑 → 𝐴:𝑋⟶𝑌) |
| mptscmfsuppd.f | ⊢ (𝜑 → 𝐴 finSupp (0g‘𝑆)) |
| Ref | Expression |
|---|---|
| mptscmfsuppd | ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) · 𝑍)) finSupp (0g‘𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptscmfsuppd.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | mptscmfsuppd.p | . 2 ⊢ (𝜑 → 𝑃 ∈ LMod) | |
| 3 | mptscmfsuppd.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑃) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝑆 = (Scalar‘𝑃)) |
| 5 | mptscmfsuppd.b | . 2 ⊢ 𝐵 = (Base‘𝑃) | |
| 6 | fvexd 6837 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ V) | |
| 7 | mptscmfsuppd.z | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑍 ∈ 𝐵) | |
| 8 | eqid 2731 | . 2 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 9 | eqid 2731 | . 2 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 10 | mptscmfsuppd.n | . 2 ⊢ · = ( ·𝑠 ‘𝑃) | |
| 11 | mptscmfsuppd.a | . . . 4 ⊢ (𝜑 → 𝐴:𝑋⟶𝑌) | |
| 12 | 11 | feqmptd 6890 | . . 3 ⊢ (𝜑 → 𝐴 = (𝑘 ∈ 𝑋 ↦ (𝐴‘𝑘))) |
| 13 | mptscmfsuppd.f | . . 3 ⊢ (𝜑 → 𝐴 finSupp (0g‘𝑆)) | |
| 14 | 12, 13 | eqbrtrrd 5115 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ (𝐴‘𝑘)) finSupp (0g‘𝑆)) |
| 15 | 1, 2, 4, 5, 6, 7, 8, 9, 10, 14 | mptscmfsupp0 20858 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) · 𝑍)) finSupp (0g‘𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 ↦ cmpt 5172 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 finSupp cfsupp 9245 Basecbs 17117 Scalarcsca 17161 ·𝑠 cvsca 17162 0gc0g 17340 LModclmod 20791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-supp 8091 df-1o 8385 df-en 8870 df-fin 8873 df-fsupp 9246 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-ring 20151 df-lmod 20793 |
| This theorem is referenced by: ply1coefsupp 22210 |
| Copyright terms: Public domain | W3C validator |