| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptscmfsuppd | Structured version Visualization version GIF version | ||
| Description: A function mapping to a scalar product in which one factor is finitely supported is finitely supported. Formerly part of proof for ply1coe 22214. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 8-Aug-2019.) (Proof shortened by AV, 18-Oct-2019.) |
| Ref | Expression |
|---|---|
| mptscmfsuppd.b | ⊢ 𝐵 = (Base‘𝑃) |
| mptscmfsuppd.s | ⊢ 𝑆 = (Scalar‘𝑃) |
| mptscmfsuppd.n | ⊢ · = ( ·𝑠 ‘𝑃) |
| mptscmfsuppd.p | ⊢ (𝜑 → 𝑃 ∈ LMod) |
| mptscmfsuppd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| mptscmfsuppd.z | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑍 ∈ 𝐵) |
| mptscmfsuppd.a | ⊢ (𝜑 → 𝐴:𝑋⟶𝑌) |
| mptscmfsuppd.f | ⊢ (𝜑 → 𝐴 finSupp (0g‘𝑆)) |
| Ref | Expression |
|---|---|
| mptscmfsuppd | ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) · 𝑍)) finSupp (0g‘𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptscmfsuppd.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | mptscmfsuppd.p | . 2 ⊢ (𝜑 → 𝑃 ∈ LMod) | |
| 3 | mptscmfsuppd.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑃) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝑆 = (Scalar‘𝑃)) |
| 5 | mptscmfsuppd.b | . 2 ⊢ 𝐵 = (Base‘𝑃) | |
| 6 | fvexd 6843 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ V) | |
| 7 | mptscmfsuppd.z | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑍 ∈ 𝐵) | |
| 8 | eqid 2733 | . 2 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 9 | eqid 2733 | . 2 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 10 | mptscmfsuppd.n | . 2 ⊢ · = ( ·𝑠 ‘𝑃) | |
| 11 | mptscmfsuppd.a | . . . 4 ⊢ (𝜑 → 𝐴:𝑋⟶𝑌) | |
| 12 | 11 | feqmptd 6896 | . . 3 ⊢ (𝜑 → 𝐴 = (𝑘 ∈ 𝑋 ↦ (𝐴‘𝑘))) |
| 13 | mptscmfsuppd.f | . . 3 ⊢ (𝜑 → 𝐴 finSupp (0g‘𝑆)) | |
| 14 | 12, 13 | eqbrtrrd 5117 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ (𝐴‘𝑘)) finSupp (0g‘𝑆)) |
| 15 | 1, 2, 4, 5, 6, 7, 8, 9, 10, 14 | mptscmfsupp0 20862 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) · 𝑍)) finSupp (0g‘𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 class class class wbr 5093 ↦ cmpt 5174 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 finSupp cfsupp 9252 Basecbs 17122 Scalarcsca 17166 ·𝑠 cvsca 17167 0gc0g 17345 LModclmod 20795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-supp 8097 df-1o 8391 df-en 8876 df-fin 8879 df-fsupp 9253 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-ring 20155 df-lmod 20797 |
| This theorem is referenced by: ply1coefsupp 22213 |
| Copyright terms: Public domain | W3C validator |