![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptscmfsuppd | Structured version Visualization version GIF version |
Description: A function mapping to a scalar product in which one factor is finitely supported is finitely supported. Formerly part of proof for ply1coe 21819. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 8-Aug-2019.) (Proof shortened by AV, 18-Oct-2019.) |
Ref | Expression |
---|---|
mptscmfsuppd.b | β’ π΅ = (Baseβπ) |
mptscmfsuppd.s | β’ π = (Scalarβπ) |
mptscmfsuppd.n | β’ Β· = ( Β·π βπ) |
mptscmfsuppd.p | β’ (π β π β LMod) |
mptscmfsuppd.x | β’ (π β π β π) |
mptscmfsuppd.z | β’ ((π β§ π β π) β π β π΅) |
mptscmfsuppd.a | β’ (π β π΄:πβΆπ) |
mptscmfsuppd.f | β’ (π β π΄ finSupp (0gβπ)) |
Ref | Expression |
---|---|
mptscmfsuppd | β’ (π β (π β π β¦ ((π΄βπ) Β· π)) finSupp (0gβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptscmfsuppd.x | . 2 β’ (π β π β π) | |
2 | mptscmfsuppd.p | . 2 β’ (π β π β LMod) | |
3 | mptscmfsuppd.s | . . 3 β’ π = (Scalarβπ) | |
4 | 3 | a1i 11 | . 2 β’ (π β π = (Scalarβπ)) |
5 | mptscmfsuppd.b | . 2 β’ π΅ = (Baseβπ) | |
6 | fvexd 6906 | . 2 β’ ((π β§ π β π) β (π΄βπ) β V) | |
7 | mptscmfsuppd.z | . 2 β’ ((π β§ π β π) β π β π΅) | |
8 | eqid 2732 | . 2 β’ (0gβπ) = (0gβπ) | |
9 | eqid 2732 | . 2 β’ (0gβπ) = (0gβπ) | |
10 | mptscmfsuppd.n | . 2 β’ Β· = ( Β·π βπ) | |
11 | mptscmfsuppd.a | . . . 4 β’ (π β π΄:πβΆπ) | |
12 | 11 | feqmptd 6960 | . . 3 β’ (π β π΄ = (π β π β¦ (π΄βπ))) |
13 | mptscmfsuppd.f | . . 3 β’ (π β π΄ finSupp (0gβπ)) | |
14 | 12, 13 | eqbrtrrd 5172 | . 2 β’ (π β (π β π β¦ (π΄βπ)) finSupp (0gβπ)) |
15 | 1, 2, 4, 5, 6, 7, 8, 9, 10, 14 | mptscmfsupp0 20536 | 1 β’ (π β (π β π β¦ ((π΄βπ) Β· π)) finSupp (0gβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 class class class wbr 5148 β¦ cmpt 5231 βΆwf 6539 βcfv 6543 (class class class)co 7408 finSupp cfsupp 9360 Basecbs 17143 Scalarcsca 17199 Β·π cvsca 17200 0gc0g 17384 LModclmod 20470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-supp 8146 df-1o 8465 df-en 8939 df-fin 8942 df-fsupp 9361 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-ring 20057 df-lmod 20472 |
This theorem is referenced by: ply1coefsupp 21818 |
Copyright terms: Public domain | W3C validator |