MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptscmfsuppd Structured version   Visualization version   GIF version

Theorem mptscmfsuppd 20948
Description: A function mapping to a scalar product in which one factor is finitely supported is finitely supported. Formerly part of proof for ply1coe 22323. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 8-Aug-2019.) (Proof shortened by AV, 18-Oct-2019.)
Hypotheses
Ref Expression
mptscmfsuppd.b 𝐵 = (Base‘𝑃)
mptscmfsuppd.s 𝑆 = (Scalar‘𝑃)
mptscmfsuppd.n · = ( ·𝑠𝑃)
mptscmfsuppd.p (𝜑𝑃 ∈ LMod)
mptscmfsuppd.x (𝜑𝑋𝑉)
mptscmfsuppd.z ((𝜑𝑘𝑋) → 𝑍𝐵)
mptscmfsuppd.a (𝜑𝐴:𝑋𝑌)
mptscmfsuppd.f (𝜑𝐴 finSupp (0g𝑆))
Assertion
Ref Expression
mptscmfsuppd (𝜑 → (𝑘𝑋 ↦ ((𝐴𝑘) · 𝑍)) finSupp (0g𝑃))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑃,𝑘   𝑆,𝑘   𝑘,𝑋   · ,𝑘   𝜑,𝑘
Allowed substitution hints:   𝑉(𝑘)   𝑌(𝑘)   𝑍(𝑘)

Proof of Theorem mptscmfsuppd
StepHypRef Expression
1 mptscmfsuppd.x . 2 (𝜑𝑋𝑉)
2 mptscmfsuppd.p . 2 (𝜑𝑃 ∈ LMod)
3 mptscmfsuppd.s . . 3 𝑆 = (Scalar‘𝑃)
43a1i 11 . 2 (𝜑𝑆 = (Scalar‘𝑃))
5 mptscmfsuppd.b . 2 𝐵 = (Base‘𝑃)
6 fvexd 6935 . 2 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ V)
7 mptscmfsuppd.z . 2 ((𝜑𝑘𝑋) → 𝑍𝐵)
8 eqid 2740 . 2 (0g𝑃) = (0g𝑃)
9 eqid 2740 . 2 (0g𝑆) = (0g𝑆)
10 mptscmfsuppd.n . 2 · = ( ·𝑠𝑃)
11 mptscmfsuppd.a . . . 4 (𝜑𝐴:𝑋𝑌)
1211feqmptd 6990 . . 3 (𝜑𝐴 = (𝑘𝑋 ↦ (𝐴𝑘)))
13 mptscmfsuppd.f . . 3 (𝜑𝐴 finSupp (0g𝑆))
1412, 13eqbrtrrd 5190 . 2 (𝜑 → (𝑘𝑋 ↦ (𝐴𝑘)) finSupp (0g𝑆))
151, 2, 4, 5, 6, 7, 8, 9, 10, 14mptscmfsupp0 20947 1 (𝜑 → (𝑘𝑋 ↦ ((𝐴𝑘) · 𝑍)) finSupp (0g𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448   finSupp cfsupp 9431  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  LModclmod 20880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-supp 8202  df-1o 8522  df-en 9004  df-fin 9007  df-fsupp 9432  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-ring 20262  df-lmod 20882
This theorem is referenced by:  ply1coefsupp  22322
  Copyright terms: Public domain W3C validator