Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptscmfsuppd | Structured version Visualization version GIF version |
Description: A function mapping to a scalar product in which one factor is finitely supported is finitely supported. Formerly part of proof for ply1coe 21377. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 8-Aug-2019.) (Proof shortened by AV, 18-Oct-2019.) |
Ref | Expression |
---|---|
mptscmfsuppd.b | ⊢ 𝐵 = (Base‘𝑃) |
mptscmfsuppd.s | ⊢ 𝑆 = (Scalar‘𝑃) |
mptscmfsuppd.n | ⊢ · = ( ·𝑠 ‘𝑃) |
mptscmfsuppd.p | ⊢ (𝜑 → 𝑃 ∈ LMod) |
mptscmfsuppd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
mptscmfsuppd.z | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑍 ∈ 𝐵) |
mptscmfsuppd.a | ⊢ (𝜑 → 𝐴:𝑋⟶𝑌) |
mptscmfsuppd.f | ⊢ (𝜑 → 𝐴 finSupp (0g‘𝑆)) |
Ref | Expression |
---|---|
mptscmfsuppd | ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) · 𝑍)) finSupp (0g‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptscmfsuppd.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | mptscmfsuppd.p | . 2 ⊢ (𝜑 → 𝑃 ∈ LMod) | |
3 | mptscmfsuppd.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑃) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝑆 = (Scalar‘𝑃)) |
5 | mptscmfsuppd.b | . 2 ⊢ 𝐵 = (Base‘𝑃) | |
6 | fvexd 6771 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ V) | |
7 | mptscmfsuppd.z | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑍 ∈ 𝐵) | |
8 | eqid 2738 | . 2 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
9 | eqid 2738 | . 2 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
10 | mptscmfsuppd.n | . 2 ⊢ · = ( ·𝑠 ‘𝑃) | |
11 | mptscmfsuppd.a | . . . 4 ⊢ (𝜑 → 𝐴:𝑋⟶𝑌) | |
12 | 11 | feqmptd 6819 | . . 3 ⊢ (𝜑 → 𝐴 = (𝑘 ∈ 𝑋 ↦ (𝐴‘𝑘))) |
13 | mptscmfsuppd.f | . . 3 ⊢ (𝜑 → 𝐴 finSupp (0g‘𝑆)) | |
14 | 12, 13 | eqbrtrrd 5094 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ (𝐴‘𝑘)) finSupp (0g‘𝑆)) |
15 | 1, 2, 4, 5, 6, 7, 8, 9, 10, 14 | mptscmfsupp0 20103 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) · 𝑍)) finSupp (0g‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 finSupp cfsupp 9058 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 LModclmod 20038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-supp 7949 df-1o 8267 df-en 8692 df-fin 8695 df-fsupp 9059 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-ring 19700 df-lmod 20040 |
This theorem is referenced by: ply1coefsupp 21376 |
Copyright terms: Public domain | W3C validator |