MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptscmfsuppd Structured version   Visualization version   GIF version

Theorem mptscmfsuppd 20295
Description: A function mapping to a scalar product in which one factor is finitely supported is finitely supported. Formerly part of proof for ply1coe 21573. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 8-Aug-2019.) (Proof shortened by AV, 18-Oct-2019.)
Hypotheses
Ref Expression
mptscmfsuppd.b 𝐵 = (Base‘𝑃)
mptscmfsuppd.s 𝑆 = (Scalar‘𝑃)
mptscmfsuppd.n · = ( ·𝑠𝑃)
mptscmfsuppd.p (𝜑𝑃 ∈ LMod)
mptscmfsuppd.x (𝜑𝑋𝑉)
mptscmfsuppd.z ((𝜑𝑘𝑋) → 𝑍𝐵)
mptscmfsuppd.a (𝜑𝐴:𝑋𝑌)
mptscmfsuppd.f (𝜑𝐴 finSupp (0g𝑆))
Assertion
Ref Expression
mptscmfsuppd (𝜑 → (𝑘𝑋 ↦ ((𝐴𝑘) · 𝑍)) finSupp (0g𝑃))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑃,𝑘   𝑆,𝑘   𝑘,𝑋   · ,𝑘   𝜑,𝑘
Allowed substitution hints:   𝑉(𝑘)   𝑌(𝑘)   𝑍(𝑘)

Proof of Theorem mptscmfsuppd
StepHypRef Expression
1 mptscmfsuppd.x . 2 (𝜑𝑋𝑉)
2 mptscmfsuppd.p . 2 (𝜑𝑃 ∈ LMod)
3 mptscmfsuppd.s . . 3 𝑆 = (Scalar‘𝑃)
43a1i 11 . 2 (𝜑𝑆 = (Scalar‘𝑃))
5 mptscmfsuppd.b . 2 𝐵 = (Base‘𝑃)
6 fvexd 6845 . 2 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ V)
7 mptscmfsuppd.z . 2 ((𝜑𝑘𝑋) → 𝑍𝐵)
8 eqid 2737 . 2 (0g𝑃) = (0g𝑃)
9 eqid 2737 . 2 (0g𝑆) = (0g𝑆)
10 mptscmfsuppd.n . 2 · = ( ·𝑠𝑃)
11 mptscmfsuppd.a . . . 4 (𝜑𝐴:𝑋𝑌)
1211feqmptd 6898 . . 3 (𝜑𝐴 = (𝑘𝑋 ↦ (𝐴𝑘)))
13 mptscmfsuppd.f . . 3 (𝜑𝐴 finSupp (0g𝑆))
1412, 13eqbrtrrd 5121 . 2 (𝜑 → (𝑘𝑋 ↦ (𝐴𝑘)) finSupp (0g𝑆))
151, 2, 4, 5, 6, 7, 8, 9, 10, 14mptscmfsupp0 20294 1 (𝜑 → (𝑘𝑋 ↦ ((𝐴𝑘) · 𝑍)) finSupp (0g𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  Vcvv 3442   class class class wbr 5097  cmpt 5180  wf 6480  cfv 6484  (class class class)co 7342   finSupp cfsupp 9231  Basecbs 17010  Scalarcsca 17063   ·𝑠 cvsca 17064  0gc0g 17248  LModclmod 20229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-supp 8053  df-1o 8372  df-en 8810  df-fin 8813  df-fsupp 9232  df-0g 17250  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-grp 18677  df-ring 19880  df-lmod 20231
This theorem is referenced by:  ply1coefsupp  21572
  Copyright terms: Public domain W3C validator