![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptscmfsuppd | Structured version Visualization version GIF version |
Description: A function mapping to a scalar product in which one factor is finitely supported is finitely supported. Formerly part of proof for ply1coe 22191. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 8-Aug-2019.) (Proof shortened by AV, 18-Oct-2019.) |
Ref | Expression |
---|---|
mptscmfsuppd.b | β’ π΅ = (Baseβπ) |
mptscmfsuppd.s | β’ π = (Scalarβπ) |
mptscmfsuppd.n | β’ Β· = ( Β·π βπ) |
mptscmfsuppd.p | β’ (π β π β LMod) |
mptscmfsuppd.x | β’ (π β π β π) |
mptscmfsuppd.z | β’ ((π β§ π β π) β π β π΅) |
mptscmfsuppd.a | β’ (π β π΄:πβΆπ) |
mptscmfsuppd.f | β’ (π β π΄ finSupp (0gβπ)) |
Ref | Expression |
---|---|
mptscmfsuppd | β’ (π β (π β π β¦ ((π΄βπ) Β· π)) finSupp (0gβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptscmfsuppd.x | . 2 β’ (π β π β π) | |
2 | mptscmfsuppd.p | . 2 β’ (π β π β LMod) | |
3 | mptscmfsuppd.s | . . 3 β’ π = (Scalarβπ) | |
4 | 3 | a1i 11 | . 2 β’ (π β π = (Scalarβπ)) |
5 | mptscmfsuppd.b | . 2 β’ π΅ = (Baseβπ) | |
6 | fvexd 6906 | . 2 β’ ((π β§ π β π) β (π΄βπ) β V) | |
7 | mptscmfsuppd.z | . 2 β’ ((π β§ π β π) β π β π΅) | |
8 | eqid 2727 | . 2 β’ (0gβπ) = (0gβπ) | |
9 | eqid 2727 | . 2 β’ (0gβπ) = (0gβπ) | |
10 | mptscmfsuppd.n | . 2 β’ Β· = ( Β·π βπ) | |
11 | mptscmfsuppd.a | . . . 4 β’ (π β π΄:πβΆπ) | |
12 | 11 | feqmptd 6961 | . . 3 β’ (π β π΄ = (π β π β¦ (π΄βπ))) |
13 | mptscmfsuppd.f | . . 3 β’ (π β π΄ finSupp (0gβπ)) | |
14 | 12, 13 | eqbrtrrd 5166 | . 2 β’ (π β (π β π β¦ (π΄βπ)) finSupp (0gβπ)) |
15 | 1, 2, 4, 5, 6, 7, 8, 9, 10, 14 | mptscmfsupp0 20792 | 1 β’ (π β (π β π β¦ ((π΄βπ) Β· π)) finSupp (0gβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 Vcvv 3469 class class class wbr 5142 β¦ cmpt 5225 βΆwf 6538 βcfv 6542 (class class class)co 7414 finSupp cfsupp 9375 Basecbs 17165 Scalarcsca 17221 Β·π cvsca 17222 0gc0g 17406 LModclmod 20725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-supp 8158 df-1o 8478 df-en 8954 df-fin 8957 df-fsupp 9376 df-0g 17408 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-grp 18878 df-ring 20159 df-lmod 20727 |
This theorem is referenced by: ply1coefsupp 22190 |
Copyright terms: Public domain | W3C validator |