Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptscmfsuppd | Structured version Visualization version GIF version |
Description: A function mapping to a scalar product in which one factor is finitely supported is finitely supported. Formerly part of proof for ply1coe 21573. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 8-Aug-2019.) (Proof shortened by AV, 18-Oct-2019.) |
Ref | Expression |
---|---|
mptscmfsuppd.b | ⊢ 𝐵 = (Base‘𝑃) |
mptscmfsuppd.s | ⊢ 𝑆 = (Scalar‘𝑃) |
mptscmfsuppd.n | ⊢ · = ( ·𝑠 ‘𝑃) |
mptscmfsuppd.p | ⊢ (𝜑 → 𝑃 ∈ LMod) |
mptscmfsuppd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
mptscmfsuppd.z | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑍 ∈ 𝐵) |
mptscmfsuppd.a | ⊢ (𝜑 → 𝐴:𝑋⟶𝑌) |
mptscmfsuppd.f | ⊢ (𝜑 → 𝐴 finSupp (0g‘𝑆)) |
Ref | Expression |
---|---|
mptscmfsuppd | ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) · 𝑍)) finSupp (0g‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptscmfsuppd.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | mptscmfsuppd.p | . 2 ⊢ (𝜑 → 𝑃 ∈ LMod) | |
3 | mptscmfsuppd.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑃) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝑆 = (Scalar‘𝑃)) |
5 | mptscmfsuppd.b | . 2 ⊢ 𝐵 = (Base‘𝑃) | |
6 | fvexd 6845 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ V) | |
7 | mptscmfsuppd.z | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑍 ∈ 𝐵) | |
8 | eqid 2737 | . 2 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
9 | eqid 2737 | . 2 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
10 | mptscmfsuppd.n | . 2 ⊢ · = ( ·𝑠 ‘𝑃) | |
11 | mptscmfsuppd.a | . . . 4 ⊢ (𝜑 → 𝐴:𝑋⟶𝑌) | |
12 | 11 | feqmptd 6898 | . . 3 ⊢ (𝜑 → 𝐴 = (𝑘 ∈ 𝑋 ↦ (𝐴‘𝑘))) |
13 | mptscmfsuppd.f | . . 3 ⊢ (𝜑 → 𝐴 finSupp (0g‘𝑆)) | |
14 | 12, 13 | eqbrtrrd 5121 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ (𝐴‘𝑘)) finSupp (0g‘𝑆)) |
15 | 1, 2, 4, 5, 6, 7, 8, 9, 10, 14 | mptscmfsupp0 20294 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) · 𝑍)) finSupp (0g‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 Vcvv 3442 class class class wbr 5097 ↦ cmpt 5180 ⟶wf 6480 ‘cfv 6484 (class class class)co 7342 finSupp cfsupp 9231 Basecbs 17010 Scalarcsca 17063 ·𝑠 cvsca 17064 0gc0g 17248 LModclmod 20229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-supp 8053 df-1o 8372 df-en 8810 df-fin 8813 df-fsupp 9232 df-0g 17250 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-grp 18677 df-ring 19880 df-lmod 20231 |
This theorem is referenced by: ply1coefsupp 21572 |
Copyright terms: Public domain | W3C validator |