MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdid Structured version   Visualization version   GIF version

Theorem gcdid 16430
Description: The gcd of a number and itself is its absolute value. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
gcdid (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁))

Proof of Theorem gcdid
StepHypRef Expression
1 1z 12494 . . 3 1 ∈ ℤ
2 0z 12471 . . 3 0 ∈ ℤ
3 gcdaddm 16428 . . 3 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 gcd 0) = (𝑁 gcd (0 + (1 · 𝑁))))
41, 2, 3mp3an13 1454 . 2 (𝑁 ∈ ℤ → (𝑁 gcd 0) = (𝑁 gcd (0 + (1 · 𝑁))))
5 gcdid0 16423 . 2 (𝑁 ∈ ℤ → (𝑁 gcd 0) = (abs‘𝑁))
6 zcn 12465 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
7 mullid 11103 . . . . . 6 (𝑁 ∈ ℂ → (1 · 𝑁) = 𝑁)
87oveq2d 7357 . . . . 5 (𝑁 ∈ ℂ → (0 + (1 · 𝑁)) = (0 + 𝑁))
9 addlid 11288 . . . . 5 (𝑁 ∈ ℂ → (0 + 𝑁) = 𝑁)
108, 9eqtrd 2765 . . . 4 (𝑁 ∈ ℂ → (0 + (1 · 𝑁)) = 𝑁)
116, 10syl 17 . . 3 (𝑁 ∈ ℤ → (0 + (1 · 𝑁)) = 𝑁)
1211oveq2d 7357 . 2 (𝑁 ∈ ℤ → (𝑁 gcd (0 + (1 · 𝑁))) = (𝑁 gcd 𝑁))
134, 5, 123eqtr3rd 2774 1 (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  cfv 6477  (class class class)co 7341  cc 10996  0cc0 10998  1c1 10999   + caddc 11001   · cmul 11003  cz 12460  abscabs 15133   gcd cgcd 16397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-z 12461  df-uz 12725  df-rp 12883  df-seq 13901  df-exp 13961  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-dvds 16156  df-gcd 16398
This theorem is referenced by:  6gcd4e2  16441  lcmid  16512  lcmgcdeq  16515  3lcm2e6woprm  16518  phibndlem  16673  coprimeprodsq  16712  logbgcd1irr  26724  ex-gcd  30427  gcdabsorb  35762  gcdnn0id  42341
  Copyright terms: Public domain W3C validator