![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gcdid | Structured version Visualization version GIF version |
Description: The gcd of a number and itself is its absolute value. (Contributed by Paul Chapman, 31-Mar-2011.) |
Ref | Expression |
---|---|
gcdid | ⊢ (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 11828 | . . 3 ⊢ 1 ∈ ℤ | |
2 | 0z 11807 | . . 3 ⊢ 0 ∈ ℤ | |
3 | gcdaddm 15736 | . . 3 ⊢ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 gcd 0) = (𝑁 gcd (0 + (1 · 𝑁)))) | |
4 | 1, 2, 3 | mp3an13 1431 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑁 gcd 0) = (𝑁 gcd (0 + (1 · 𝑁)))) |
5 | gcdid0 15731 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑁 gcd 0) = (abs‘𝑁)) | |
6 | zcn 11801 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
7 | mulid2 10440 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → (1 · 𝑁) = 𝑁) | |
8 | 7 | oveq2d 6994 | . . . . 5 ⊢ (𝑁 ∈ ℂ → (0 + (1 · 𝑁)) = (0 + 𝑁)) |
9 | addid2 10625 | . . . . 5 ⊢ (𝑁 ∈ ℂ → (0 + 𝑁) = 𝑁) | |
10 | 8, 9 | eqtrd 2814 | . . . 4 ⊢ (𝑁 ∈ ℂ → (0 + (1 · 𝑁)) = 𝑁) |
11 | 6, 10 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℤ → (0 + (1 · 𝑁)) = 𝑁) |
12 | 11 | oveq2d 6994 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑁 gcd (0 + (1 · 𝑁))) = (𝑁 gcd 𝑁)) |
13 | 4, 5, 12 | 3eqtr3rd 2823 | 1 ⊢ (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 ‘cfv 6190 (class class class)co 6978 ℂcc 10335 0cc0 10337 1c1 10338 + caddc 10340 · cmul 10342 ℤcz 11796 abscabs 14457 gcd cgcd 15706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-cnex 10393 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 ax-pre-mulgt0 10414 ax-pre-sup 10415 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-om 7399 df-2nd 7504 df-wrecs 7752 df-recs 7814 df-rdg 7852 df-er 8091 df-en 8309 df-dom 8310 df-sdom 8311 df-sup 8703 df-inf 8704 df-pnf 10478 df-mnf 10479 df-xr 10480 df-ltxr 10481 df-le 10482 df-sub 10674 df-neg 10675 df-div 11101 df-nn 11442 df-2 11506 df-3 11507 df-n0 11711 df-z 11797 df-uz 12062 df-rp 12208 df-seq 13188 df-exp 13248 df-cj 14322 df-re 14323 df-im 14324 df-sqrt 14458 df-abs 14459 df-dvds 15471 df-gcd 15707 |
This theorem is referenced by: 6gcd4e2 15745 gcdmultiple 15759 lcmid 15812 lcmgcdeq 15815 3lcm2e6woprm 15818 phibndlem 15966 coprimeprodsq 16004 logbgcd1irr 25076 ex-gcd 28017 gcdabsorb 32504 |
Copyright terms: Public domain | W3C validator |