| Step | Hyp | Ref
| Expression |
| 1 | | 1zzd 12628 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 1 ∈
ℤ) |
| 2 | | nnz 12614 |
. . . 4
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
| 3 | 2 | adantr 480 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝑁 ∈
ℤ) |
| 4 | | simplr 768 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝐴 ∈ ℂ) |
| 5 | | 2nn 12318 |
. . . . . 6
⊢ 2 ∈
ℕ |
| 6 | | elfznn 13575 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) |
| 7 | 6 | adantl 481 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ) |
| 8 | 7 | nnnn0d 12567 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0) |
| 9 | | nnexpcl 14097 |
. . . . . 6
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈ ℕ) |
| 10 | 5, 8, 9 | sylancr 587 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) ∈ ℕ) |
| 11 | 10 | nncnd 12261 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) ∈ ℂ) |
| 12 | 10 | nnne0d 12295 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) ≠ 0) |
| 13 | 4, 11, 12 | divcld 12022 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴 / (2↑𝑘)) ∈ ℂ) |
| 14 | | oveq2 7418 |
. . . 4
⊢ (𝑘 = (𝑗 + 1) → (2↑𝑘) = (2↑(𝑗 + 1))) |
| 15 | 14 | oveq2d 7426 |
. . 3
⊢ (𝑘 = (𝑗 + 1) → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑(𝑗 + 1)))) |
| 16 | 1, 1, 3, 13, 15 | fsumshftm 15802 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1)))) |
| 17 | | 1m1e0 12317 |
. . . . 5
⊢ (1
− 1) = 0 |
| 18 | 17 | oveq1i 7420 |
. . . 4
⊢ ((1
− 1)...(𝑁 − 1))
= (0...(𝑁 −
1)) |
| 19 | 18 | sumeq1i 15718 |
. . 3
⊢
Σ𝑗 ∈ ((1
− 1)...(𝑁 −
1))(𝐴 / (2↑(𝑗 + 1))) = Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) |
| 20 | | halfcn 12460 |
. . . . . . . . . 10
⊢ (1 / 2)
∈ ℂ |
| 21 | | elfznn0 13642 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0) |
| 22 | 21 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0) |
| 23 | | expcl 14102 |
. . . . . . . . . 10
⊢ (((1 / 2)
∈ ℂ ∧ 𝑗
∈ ℕ0) → ((1 / 2)↑𝑗) ∈ ℂ) |
| 24 | 20, 22, 23 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑𝑗) ∈
ℂ) |
| 25 | | 2cnd 12323 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 2 ∈
ℂ) |
| 26 | | 2ne0 12349 |
. . . . . . . . . 10
⊢ 2 ≠
0 |
| 27 | 26 | a1i 11 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 2 ≠
0) |
| 28 | 24, 25, 27 | divrecd 12025 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((1 / 2)↑𝑗) / 2) = (((1 / 2)↑𝑗) · (1 /
2))) |
| 29 | | expp1 14091 |
. . . . . . . . 9
⊢ (((1 / 2)
∈ ℂ ∧ 𝑗
∈ ℕ0) → ((1 / 2)↑(𝑗 + 1)) = (((1 / 2)↑𝑗) · (1 / 2))) |
| 30 | 20, 22, 29 | sylancr 587 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑(𝑗 + 1)) = (((1 / 2)↑𝑗) · (1 /
2))) |
| 31 | | elfzelz 13546 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℤ) |
| 32 | 31 | peano2zd 12705 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈ ℤ) |
| 33 | 32 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℤ) |
| 34 | 25, 27, 33 | exprecd 14177 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑(𝑗 + 1)) = (1 / (2↑(𝑗 + 1)))) |
| 35 | 28, 30, 34 | 3eqtr2rd 2778 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (1 / (2↑(𝑗 + 1))) = (((1 / 2)↑𝑗) / 2)) |
| 36 | 35 | oveq2d 7426 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 · (1 / (2↑(𝑗 + 1)))) = (𝐴 · (((1 / 2)↑𝑗) / 2))) |
| 37 | | simplr 768 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝐴 ∈ ℂ) |
| 38 | | peano2nn0 12546 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
ℕ0) |
| 39 | 22, 38 | syl 17 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈
ℕ0) |
| 40 | | nnexpcl 14097 |
. . . . . . . . 9
⊢ ((2
∈ ℕ ∧ (𝑗 +
1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ) |
| 41 | 5, 39, 40 | sylancr 587 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) ∈
ℕ) |
| 42 | 41 | nncnd 12261 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) ∈
ℂ) |
| 43 | 41 | nnne0d 12295 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) ≠ 0) |
| 44 | 37, 42, 43 | divrecd 12025 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 / (2↑(𝑗 + 1))) = (𝐴 · (1 / (2↑(𝑗 + 1))))) |
| 45 | 24, 37, 25, 27 | div12d 12058 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((1 / 2)↑𝑗) · (𝐴 / 2)) = (𝐴 · (((1 / 2)↑𝑗) / 2))) |
| 46 | 36, 44, 45 | 3eqtr4d 2781 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 / (2↑(𝑗 + 1))) = (((1 / 2)↑𝑗) · (𝐴 / 2))) |
| 47 | 46 | sumeq2dv 15723 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = Σ𝑗 ∈ (0...(𝑁 − 1))(((1 / 2)↑𝑗) · (𝐴 / 2))) |
| 48 | | fzfid 13996 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
(0...(𝑁 − 1)) ∈
Fin) |
| 49 | | halfcl 12472 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (𝐴 / 2) ∈
ℂ) |
| 50 | 49 | adantl 481 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / 2) ∈
ℂ) |
| 51 | 48, 50, 24 | fsummulc1 15806 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
(Σ𝑗 ∈
(0...(𝑁 − 1))((1 /
2)↑𝑗) · (𝐴 / 2)) = Σ𝑗 ∈ (0...(𝑁 − 1))(((1 / 2)↑𝑗) · (𝐴 / 2))) |
| 52 | 47, 51 | eqtr4d 2774 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2))) |
| 53 | 19, 52 | eqtrid 2783 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
Σ𝑗 ∈ ((1 −
1)...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2))) |
| 54 | | 2cnd 12323 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 2 ∈
ℂ) |
| 55 | 26 | a1i 11 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 2 ≠
0) |
| 56 | 54, 55, 3 | exprecd 14177 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 /
2)↑𝑁) = (1 /
(2↑𝑁))) |
| 57 | 56 | oveq2d 7426 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1
− ((1 / 2)↑𝑁)) =
(1 − (1 / (2↑𝑁)))) |
| 58 | | 1mhlfehlf 12465 |
. . . . . . 7
⊢ (1
− (1 / 2)) = (1 / 2) |
| 59 | 58 | a1i 11 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1
− (1 / 2)) = (1 / 2)) |
| 60 | 57, 59 | oveq12d 7428 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1
− ((1 / 2)↑𝑁)) /
(1 − (1 / 2))) = ((1 − (1 / (2↑𝑁))) / (1 / 2))) |
| 61 | | simpr 484 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝐴 ∈
ℂ) |
| 62 | 61, 54, 55 | divrec2d 12026 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / 2) = ((1 / 2) · 𝐴)) |
| 63 | 60, 62 | oveq12d 7428 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1
− ((1 / 2)↑𝑁)) /
(1 − (1 / 2))) · (𝐴 / 2)) = (((1 − (1 / (2↑𝑁))) / (1 / 2)) · ((1 / 2)
· 𝐴))) |
| 64 | | ax-1cn 11192 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 65 | | nnnn0 12513 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
| 66 | 65 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝑁 ∈
ℕ0) |
| 67 | | nnexpcl 14097 |
. . . . . . . . . 10
⊢ ((2
∈ ℕ ∧ 𝑁
∈ ℕ0) → (2↑𝑁) ∈ ℕ) |
| 68 | 5, 66, 67 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
(2↑𝑁) ∈
ℕ) |
| 69 | 68 | nnrecred 12296 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 /
(2↑𝑁)) ∈
ℝ) |
| 70 | 69 | recnd 11268 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 /
(2↑𝑁)) ∈
ℂ) |
| 71 | | subcl 11486 |
. . . . . . 7
⊢ ((1
∈ ℂ ∧ (1 / (2↑𝑁)) ∈ ℂ) → (1 − (1 /
(2↑𝑁))) ∈
ℂ) |
| 72 | 64, 70, 71 | sylancr 587 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1
− (1 / (2↑𝑁)))
∈ ℂ) |
| 73 | 20 | a1i 11 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2)
∈ ℂ) |
| 74 | | 0re 11242 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
| 75 | | halfgt0 12461 |
. . . . . . . 8
⊢ 0 < (1
/ 2) |
| 76 | 74, 75 | gtneii 11352 |
. . . . . . 7
⊢ (1 / 2)
≠ 0 |
| 77 | 76 | a1i 11 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2)
≠ 0) |
| 78 | 72, 73, 77 | divcld 12022 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1
− (1 / (2↑𝑁))) /
(1 / 2)) ∈ ℂ) |
| 79 | 78, 73, 61 | mulassd 11263 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((((1
− (1 / (2↑𝑁))) /
(1 / 2)) · (1 / 2)) · 𝐴) = (((1 − (1 / (2↑𝑁))) / (1 / 2)) · ((1 / 2)
· 𝐴))) |
| 80 | 72, 73, 77 | divcan1d 12023 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1
− (1 / (2↑𝑁))) /
(1 / 2)) · (1 / 2)) = (1 − (1 / (2↑𝑁)))) |
| 81 | 80 | oveq1d 7425 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((((1
− (1 / (2↑𝑁))) /
(1 / 2)) · (1 / 2)) · 𝐴) = ((1 − (1 / (2↑𝑁))) · 𝐴)) |
| 82 | 63, 79, 81 | 3eqtr2d 2777 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1
− ((1 / 2)↑𝑁)) /
(1 − (1 / 2))) · (𝐴 / 2)) = ((1 − (1 / (2↑𝑁))) · 𝐴)) |
| 83 | | halfre 12459 |
. . . . . . 7
⊢ (1 / 2)
∈ ℝ |
| 84 | | halflt1 12463 |
. . . . . . 7
⊢ (1 / 2)
< 1 |
| 85 | 83, 84 | ltneii 11353 |
. . . . . 6
⊢ (1 / 2)
≠ 1 |
| 86 | 85 | a1i 11 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2)
≠ 1) |
| 87 | 73, 86, 66 | geoser 15888 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) = ((1 − ((1 /
2)↑𝑁)) / (1 − (1
/ 2)))) |
| 88 | 87 | oveq1d 7425 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
(Σ𝑗 ∈
(0...(𝑁 − 1))((1 /
2)↑𝑗) · (𝐴 / 2)) = (((1 − ((1 /
2)↑𝑁)) / (1 − (1
/ 2))) · (𝐴 /
2))) |
| 89 | | mullid 11239 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (1
· 𝐴) = 𝐴) |
| 90 | 89 | adantl 481 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1
· 𝐴) = 𝐴) |
| 91 | 90 | eqcomd 2742 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝐴 = (1 · 𝐴)) |
| 92 | 68 | nncnd 12261 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
(2↑𝑁) ∈
ℂ) |
| 93 | 68 | nnne0d 12295 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
(2↑𝑁) ≠
0) |
| 94 | 61, 92, 93 | divrec2d 12026 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / (2↑𝑁)) = ((1 / (2↑𝑁)) · 𝐴)) |
| 95 | 91, 94 | oveq12d 7428 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 − (𝐴 / (2↑𝑁))) = ((1 · 𝐴) − ((1 / (2↑𝑁)) · 𝐴))) |
| 96 | 64 | a1i 11 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 1 ∈
ℂ) |
| 97 | 96, 70, 61 | subdird 11699 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1
− (1 / (2↑𝑁)))
· 𝐴) = ((1 ·
𝐴) − ((1 /
(2↑𝑁)) · 𝐴))) |
| 98 | 95, 97 | eqtr4d 2774 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 − (𝐴 / (2↑𝑁))) = ((1 − (1 / (2↑𝑁))) · 𝐴)) |
| 99 | 82, 88, 98 | 3eqtr4d 2781 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
(Σ𝑗 ∈
(0...(𝑁 − 1))((1 /
2)↑𝑗) · (𝐴 / 2)) = (𝐴 − (𝐴 / (2↑𝑁)))) |
| 100 | 16, 53, 99 | 3eqtrd 2775 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = (𝐴 − (𝐴 / (2↑𝑁)))) |