Step | Hyp | Ref
| Expression |
1 | | 1zzd 12281 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 1 ∈
ℤ) |
2 | | nnz 12272 |
. . . 4
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
3 | 2 | adantr 480 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝑁 ∈
ℤ) |
4 | | simplr 765 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝐴 ∈ ℂ) |
5 | | 2nn 11976 |
. . . . . 6
⊢ 2 ∈
ℕ |
6 | | elfznn 13214 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) |
7 | 6 | adantl 481 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ) |
8 | 7 | nnnn0d 12223 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0) |
9 | | nnexpcl 13723 |
. . . . . 6
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈ ℕ) |
10 | 5, 8, 9 | sylancr 586 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) ∈ ℕ) |
11 | 10 | nncnd 11919 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) ∈ ℂ) |
12 | 10 | nnne0d 11953 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (2↑𝑘) ≠ 0) |
13 | 4, 11, 12 | divcld 11681 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴 / (2↑𝑘)) ∈ ℂ) |
14 | | oveq2 7263 |
. . . 4
⊢ (𝑘 = (𝑗 + 1) → (2↑𝑘) = (2↑(𝑗 + 1))) |
15 | 14 | oveq2d 7271 |
. . 3
⊢ (𝑘 = (𝑗 + 1) → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑(𝑗 + 1)))) |
16 | 1, 1, 3, 13, 15 | fsumshftm 15421 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1)))) |
17 | | 1m1e0 11975 |
. . . . 5
⊢ (1
− 1) = 0 |
18 | 17 | oveq1i 7265 |
. . . 4
⊢ ((1
− 1)...(𝑁 − 1))
= (0...(𝑁 −
1)) |
19 | 18 | sumeq1i 15338 |
. . 3
⊢
Σ𝑗 ∈ ((1
− 1)...(𝑁 −
1))(𝐴 / (2↑(𝑗 + 1))) = Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) |
20 | | halfcn 12118 |
. . . . . . . . . 10
⊢ (1 / 2)
∈ ℂ |
21 | | elfznn0 13278 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0) |
22 | 21 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0) |
23 | | expcl 13728 |
. . . . . . . . . 10
⊢ (((1 / 2)
∈ ℂ ∧ 𝑗
∈ ℕ0) → ((1 / 2)↑𝑗) ∈ ℂ) |
24 | 20, 22, 23 | sylancr 586 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑𝑗) ∈
ℂ) |
25 | | 2cnd 11981 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 2 ∈
ℂ) |
26 | | 2ne0 12007 |
. . . . . . . . . 10
⊢ 2 ≠
0 |
27 | 26 | a1i 11 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 2 ≠
0) |
28 | 24, 25, 27 | divrecd 11684 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((1 / 2)↑𝑗) / 2) = (((1 / 2)↑𝑗) · (1 /
2))) |
29 | | expp1 13717 |
. . . . . . . . 9
⊢ (((1 / 2)
∈ ℂ ∧ 𝑗
∈ ℕ0) → ((1 / 2)↑(𝑗 + 1)) = (((1 / 2)↑𝑗) · (1 / 2))) |
30 | 20, 22, 29 | sylancr 586 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑(𝑗 + 1)) = (((1 / 2)↑𝑗) · (1 /
2))) |
31 | | elfzelz 13185 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℤ) |
32 | 31 | peano2zd 12358 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈ ℤ) |
33 | 32 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℤ) |
34 | 25, 27, 33 | exprecd 13800 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((1 / 2)↑(𝑗 + 1)) = (1 / (2↑(𝑗 + 1)))) |
35 | 28, 30, 34 | 3eqtr2rd 2785 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (1 / (2↑(𝑗 + 1))) = (((1 / 2)↑𝑗) / 2)) |
36 | 35 | oveq2d 7271 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 · (1 / (2↑(𝑗 + 1)))) = (𝐴 · (((1 / 2)↑𝑗) / 2))) |
37 | | simplr 765 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝐴 ∈ ℂ) |
38 | | peano2nn0 12203 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
ℕ0) |
39 | 22, 38 | syl 17 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈
ℕ0) |
40 | | nnexpcl 13723 |
. . . . . . . . 9
⊢ ((2
∈ ℕ ∧ (𝑗 +
1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ) |
41 | 5, 39, 40 | sylancr 586 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) ∈
ℕ) |
42 | 41 | nncnd 11919 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) ∈
ℂ) |
43 | 41 | nnne0d 11953 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (2↑(𝑗 + 1)) ≠ 0) |
44 | 37, 42, 43 | divrecd 11684 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 / (2↑(𝑗 + 1))) = (𝐴 · (1 / (2↑(𝑗 + 1))))) |
45 | 24, 37, 25, 27 | div12d 11717 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((1 / 2)↑𝑗) · (𝐴 / 2)) = (𝐴 · (((1 / 2)↑𝑗) / 2))) |
46 | 36, 44, 45 | 3eqtr4d 2788 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴 / (2↑(𝑗 + 1))) = (((1 / 2)↑𝑗) · (𝐴 / 2))) |
47 | 46 | sumeq2dv 15343 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = Σ𝑗 ∈ (0...(𝑁 − 1))(((1 / 2)↑𝑗) · (𝐴 / 2))) |
48 | | fzfid 13621 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
(0...(𝑁 − 1)) ∈
Fin) |
49 | | halfcl 12128 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (𝐴 / 2) ∈
ℂ) |
50 | 49 | adantl 481 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / 2) ∈
ℂ) |
51 | 48, 50, 24 | fsummulc1 15425 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
(Σ𝑗 ∈
(0...(𝑁 − 1))((1 /
2)↑𝑗) · (𝐴 / 2)) = Σ𝑗 ∈ (0...(𝑁 − 1))(((1 / 2)↑𝑗) · (𝐴 / 2))) |
52 | 47, 51 | eqtr4d 2781 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
Σ𝑗 ∈ (0...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2))) |
53 | 19, 52 | eqtrid 2790 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
Σ𝑗 ∈ ((1 −
1)...(𝑁 − 1))(𝐴 / (2↑(𝑗 + 1))) = (Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) · (𝐴 / 2))) |
54 | | 2cnd 11981 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 2 ∈
ℂ) |
55 | 26 | a1i 11 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 2 ≠
0) |
56 | 54, 55, 3 | exprecd 13800 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1 /
2)↑𝑁) = (1 /
(2↑𝑁))) |
57 | 56 | oveq2d 7271 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1
− ((1 / 2)↑𝑁)) =
(1 − (1 / (2↑𝑁)))) |
58 | | 1mhlfehlf 12122 |
. . . . . . 7
⊢ (1
− (1 / 2)) = (1 / 2) |
59 | 58 | a1i 11 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1
− (1 / 2)) = (1 / 2)) |
60 | 57, 59 | oveq12d 7273 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1
− ((1 / 2)↑𝑁)) /
(1 − (1 / 2))) = ((1 − (1 / (2↑𝑁))) / (1 / 2))) |
61 | | simpr 484 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝐴 ∈
ℂ) |
62 | 61, 54, 55 | divrec2d 11685 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / 2) = ((1 / 2) · 𝐴)) |
63 | 60, 62 | oveq12d 7273 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1
− ((1 / 2)↑𝑁)) /
(1 − (1 / 2))) · (𝐴 / 2)) = (((1 − (1 / (2↑𝑁))) / (1 / 2)) · ((1 / 2)
· 𝐴))) |
64 | | ax-1cn 10860 |
. . . . . . 7
⊢ 1 ∈
ℂ |
65 | | nnnn0 12170 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
66 | 65 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝑁 ∈
ℕ0) |
67 | | nnexpcl 13723 |
. . . . . . . . . 10
⊢ ((2
∈ ℕ ∧ 𝑁
∈ ℕ0) → (2↑𝑁) ∈ ℕ) |
68 | 5, 66, 67 | sylancr 586 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
(2↑𝑁) ∈
ℕ) |
69 | 68 | nnrecred 11954 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 /
(2↑𝑁)) ∈
ℝ) |
70 | 69 | recnd 10934 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 /
(2↑𝑁)) ∈
ℂ) |
71 | | subcl 11150 |
. . . . . . 7
⊢ ((1
∈ ℂ ∧ (1 / (2↑𝑁)) ∈ ℂ) → (1 − (1 /
(2↑𝑁))) ∈
ℂ) |
72 | 64, 70, 71 | sylancr 586 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1
− (1 / (2↑𝑁)))
∈ ℂ) |
73 | 20 | a1i 11 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2)
∈ ℂ) |
74 | | 0re 10908 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
75 | | halfgt0 12119 |
. . . . . . . 8
⊢ 0 < (1
/ 2) |
76 | 74, 75 | gtneii 11017 |
. . . . . . 7
⊢ (1 / 2)
≠ 0 |
77 | 76 | a1i 11 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2)
≠ 0) |
78 | 72, 73, 77 | divcld 11681 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1
− (1 / (2↑𝑁))) /
(1 / 2)) ∈ ℂ) |
79 | 78, 73, 61 | mulassd 10929 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((((1
− (1 / (2↑𝑁))) /
(1 / 2)) · (1 / 2)) · 𝐴) = (((1 − (1 / (2↑𝑁))) / (1 / 2)) · ((1 / 2)
· 𝐴))) |
80 | 72, 73, 77 | divcan1d 11682 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1
− (1 / (2↑𝑁))) /
(1 / 2)) · (1 / 2)) = (1 − (1 / (2↑𝑁)))) |
81 | 80 | oveq1d 7270 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((((1
− (1 / (2↑𝑁))) /
(1 / 2)) · (1 / 2)) · 𝐴) = ((1 − (1 / (2↑𝑁))) · 𝐴)) |
82 | 63, 79, 81 | 3eqtr2d 2784 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (((1
− ((1 / 2)↑𝑁)) /
(1 − (1 / 2))) · (𝐴 / 2)) = ((1 − (1 / (2↑𝑁))) · 𝐴)) |
83 | | halfre 12117 |
. . . . . . 7
⊢ (1 / 2)
∈ ℝ |
84 | | halflt1 12121 |
. . . . . . 7
⊢ (1 / 2)
< 1 |
85 | 83, 84 | ltneii 11018 |
. . . . . 6
⊢ (1 / 2)
≠ 1 |
86 | 85 | a1i 11 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1 / 2)
≠ 1) |
87 | 73, 86, 66 | geoser 15507 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
Σ𝑗 ∈ (0...(𝑁 − 1))((1 / 2)↑𝑗) = ((1 − ((1 /
2)↑𝑁)) / (1 − (1
/ 2)))) |
88 | 87 | oveq1d 7270 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
(Σ𝑗 ∈
(0...(𝑁 − 1))((1 /
2)↑𝑗) · (𝐴 / 2)) = (((1 − ((1 /
2)↑𝑁)) / (1 − (1
/ 2))) · (𝐴 /
2))) |
89 | | mulid2 10905 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (1
· 𝐴) = 𝐴) |
90 | 89 | adantl 481 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (1
· 𝐴) = 𝐴) |
91 | 90 | eqcomd 2744 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 𝐴 = (1 · 𝐴)) |
92 | 68 | nncnd 11919 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
(2↑𝑁) ∈
ℂ) |
93 | 68 | nnne0d 11953 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
(2↑𝑁) ≠
0) |
94 | 61, 92, 93 | divrec2d 11685 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 / (2↑𝑁)) = ((1 / (2↑𝑁)) · 𝐴)) |
95 | 91, 94 | oveq12d 7273 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 − (𝐴 / (2↑𝑁))) = ((1 · 𝐴) − ((1 / (2↑𝑁)) · 𝐴))) |
96 | 64 | a1i 11 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → 1 ∈
ℂ) |
97 | 96, 70, 61 | subdird 11362 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((1
− (1 / (2↑𝑁)))
· 𝐴) = ((1 ·
𝐴) − ((1 /
(2↑𝑁)) · 𝐴))) |
98 | 95, 97 | eqtr4d 2781 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → (𝐴 − (𝐴 / (2↑𝑁))) = ((1 − (1 / (2↑𝑁))) · 𝐴)) |
99 | 82, 88, 98 | 3eqtr4d 2788 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
(Σ𝑗 ∈
(0...(𝑁 − 1))((1 /
2)↑𝑗) · (𝐴 / 2)) = (𝐴 − (𝐴 / (2↑𝑁)))) |
100 | 16, 53, 99 | 3eqtrd 2782 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) →
Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = (𝐴 − (𝐴 / (2↑𝑁)))) |