![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gcdadd | Structured version Visualization version GIF version |
Description: The GCD of two numbers is the same as the GCD of the left and their sum. (Contributed by Scott Fenton, 20-Apr-2014.) |
Ref | Expression |
---|---|
gcdadd | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + 𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 11822 | . . 3 ⊢ 1 ∈ ℤ | |
2 | gcdaddm 15727 | . . 3 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (1 · 𝑀)))) | |
3 | 1, 2 | mp3an1 1427 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (1 · 𝑀)))) |
4 | zcn 11795 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
5 | mulid2 10434 | . . . . . 6 ⊢ (𝑀 ∈ ℂ → (1 · 𝑀) = 𝑀) | |
6 | 5 | oveq2d 6990 | . . . . 5 ⊢ (𝑀 ∈ ℂ → (𝑁 + (1 · 𝑀)) = (𝑁 + 𝑀)) |
7 | 6 | oveq2d 6990 | . . . 4 ⊢ (𝑀 ∈ ℂ → (𝑀 gcd (𝑁 + (1 · 𝑀))) = (𝑀 gcd (𝑁 + 𝑀))) |
8 | 4, 7 | syl 17 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑀 gcd (𝑁 + (1 · 𝑀))) = (𝑀 gcd (𝑁 + 𝑀))) |
9 | 8 | adantr 473 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑁 + (1 · 𝑀))) = (𝑀 gcd (𝑁 + 𝑀))) |
10 | 3, 9 | eqtrd 2811 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + 𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2048 (class class class)co 6974 ℂcc 10329 1c1 10332 + caddc 10334 · cmul 10336 ℤcz 11790 gcd cgcd 15697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2747 ax-sep 5058 ax-nul 5065 ax-pow 5117 ax-pr 5184 ax-un 7277 ax-cnex 10387 ax-resscn 10388 ax-1cn 10389 ax-icn 10390 ax-addcl 10391 ax-addrcl 10392 ax-mulcl 10393 ax-mulrcl 10394 ax-mulcom 10395 ax-addass 10396 ax-mulass 10397 ax-distr 10398 ax-i2m1 10399 ax-1ne0 10400 ax-1rid 10401 ax-rnegex 10402 ax-rrecex 10403 ax-cnre 10404 ax-pre-lttri 10405 ax-pre-lttrn 10406 ax-pre-ltadd 10407 ax-pre-mulgt0 10408 ax-pre-sup 10409 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2756 df-cleq 2768 df-clel 2843 df-nfc 2915 df-ne 2965 df-nel 3071 df-ral 3090 df-rex 3091 df-reu 3092 df-rmo 3093 df-rab 3094 df-v 3414 df-sbc 3681 df-csb 3786 df-dif 3831 df-un 3833 df-in 3835 df-ss 3842 df-pss 3844 df-nul 4178 df-if 4349 df-pw 4422 df-sn 4440 df-pr 4442 df-tp 4444 df-op 4446 df-uni 4711 df-iun 4792 df-br 4928 df-opab 4990 df-mpt 5007 df-tr 5029 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-2nd 7499 df-wrecs 7747 df-recs 7809 df-rdg 7847 df-er 8085 df-en 8303 df-dom 8304 df-sdom 8305 df-sup 8697 df-inf 8698 df-pnf 10472 df-mnf 10473 df-xr 10474 df-ltxr 10475 df-le 10476 df-sub 10668 df-neg 10669 df-div 11095 df-nn 11436 df-2 11500 df-3 11501 df-n0 11705 df-z 11791 df-uz 12056 df-rp 12202 df-seq 13182 df-exp 13242 df-cj 14313 df-re 14314 df-im 14315 df-sqrt 14449 df-abs 14450 df-dvds 15462 df-gcd 15698 |
This theorem is referenced by: 6gcd4e2 15736 3lcm2e6woprm 15809 pythagtriplem3 16005 ex-gcd 28008 |
Copyright terms: Public domain | W3C validator |