MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdadd Structured version   Visualization version   GIF version

Theorem gcdadd 15728
Description: The GCD of two numbers is the same as the GCD of the left and their sum. (Contributed by Scott Fenton, 20-Apr-2014.)
Assertion
Ref Expression
gcdadd ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + 𝑀)))

Proof of Theorem gcdadd
StepHypRef Expression
1 1z 11822 . . 3 1 ∈ ℤ
2 gcdaddm 15727 . . 3 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (1 · 𝑀))))
31, 2mp3an1 1427 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (1 · 𝑀))))
4 zcn 11795 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
5 mulid2 10434 . . . . . 6 (𝑀 ∈ ℂ → (1 · 𝑀) = 𝑀)
65oveq2d 6990 . . . . 5 (𝑀 ∈ ℂ → (𝑁 + (1 · 𝑀)) = (𝑁 + 𝑀))
76oveq2d 6990 . . . 4 (𝑀 ∈ ℂ → (𝑀 gcd (𝑁 + (1 · 𝑀))) = (𝑀 gcd (𝑁 + 𝑀)))
84, 7syl 17 . . 3 (𝑀 ∈ ℤ → (𝑀 gcd (𝑁 + (1 · 𝑀))) = (𝑀 gcd (𝑁 + 𝑀)))
98adantr 473 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑁 + (1 · 𝑀))) = (𝑀 gcd (𝑁 + 𝑀)))
103, 9eqtrd 2811 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2048  (class class class)co 6974  cc 10329  1c1 10332   + caddc 10334   · cmul 10336  cz 11790   gcd cgcd 15697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2747  ax-sep 5058  ax-nul 5065  ax-pow 5117  ax-pr 5184  ax-un 7277  ax-cnex 10387  ax-resscn 10388  ax-1cn 10389  ax-icn 10390  ax-addcl 10391  ax-addrcl 10392  ax-mulcl 10393  ax-mulrcl 10394  ax-mulcom 10395  ax-addass 10396  ax-mulass 10397  ax-distr 10398  ax-i2m1 10399  ax-1ne0 10400  ax-1rid 10401  ax-rnegex 10402  ax-rrecex 10403  ax-cnre 10404  ax-pre-lttri 10405  ax-pre-lttrn 10406  ax-pre-ltadd 10407  ax-pre-mulgt0 10408  ax-pre-sup 10409
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2756  df-cleq 2768  df-clel 2843  df-nfc 2915  df-ne 2965  df-nel 3071  df-ral 3090  df-rex 3091  df-reu 3092  df-rmo 3093  df-rab 3094  df-v 3414  df-sbc 3681  df-csb 3786  df-dif 3831  df-un 3833  df-in 3835  df-ss 3842  df-pss 3844  df-nul 4178  df-if 4349  df-pw 4422  df-sn 4440  df-pr 4442  df-tp 4444  df-op 4446  df-uni 4711  df-iun 4792  df-br 4928  df-opab 4990  df-mpt 5007  df-tr 5029  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-2nd 7499  df-wrecs 7747  df-recs 7809  df-rdg 7847  df-er 8085  df-en 8303  df-dom 8304  df-sdom 8305  df-sup 8697  df-inf 8698  df-pnf 10472  df-mnf 10473  df-xr 10474  df-ltxr 10475  df-le 10476  df-sub 10668  df-neg 10669  df-div 11095  df-nn 11436  df-2 11500  df-3 11501  df-n0 11705  df-z 11791  df-uz 12056  df-rp 12202  df-seq 13182  df-exp 13242  df-cj 14313  df-re 14314  df-im 14315  df-sqrt 14449  df-abs 14450  df-dvds 15462  df-gcd 15698
This theorem is referenced by:  6gcd4e2  15736  3lcm2e6woprm  15809  pythagtriplem3  16005  ex-gcd  28008
  Copyright terms: Public domain W3C validator