MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  div1 Structured version   Visualization version   GIF version

Theorem div1 11901
Description: A number divided by 1 is itself. (Contributed by NM, 9-Jan-2002.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
div1 (๐ด โˆˆ โ„‚ โ†’ (๐ด / 1) = ๐ด)

Proof of Theorem div1
StepHypRef Expression
1 mullid 11211 . 2 (๐ด โˆˆ โ„‚ โ†’ (1 ยท ๐ด) = ๐ด)
2 ax-1cn 11165 . . . . 5 1 โˆˆ โ„‚
3 ax-1ne0 11176 . . . . 5 1 โ‰  0
42, 3pm3.2i 470 . . . 4 (1 โˆˆ โ„‚ โˆง 1 โ‰  0)
5 divmul 11873 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚ โˆง (1 โˆˆ โ„‚ โˆง 1 โ‰  0)) โ†’ ((๐ด / 1) = ๐ด โ†” (1 ยท ๐ด) = ๐ด))
64, 5mp3an3 1446 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚) โ†’ ((๐ด / 1) = ๐ด โ†” (1 ยท ๐ด) = ๐ด))
76anidms 566 . 2 (๐ด โˆˆ โ„‚ โ†’ ((๐ด / 1) = ๐ด โ†” (1 ยท ๐ด) = ๐ด))
81, 7mpbird 257 1 (๐ด โˆˆ โ„‚ โ†’ (๐ด / 1) = ๐ด)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   = wceq 1533   โˆˆ wcel 2098   โ‰  wne 2932  (class class class)co 7402  โ„‚cc 11105  0cc0 11107  1c1 11108   ยท cmul 11112   / cdiv 11869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-po 5579  df-so 5580  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870
This theorem is referenced by:  1div1e1  11902  divdiv1  11923  divdiv2  11924  div1i  11940  div1d  11980  ef4p  16055  efgt1p2  16056  efgt1p  16057  dveflem  25835  logneg2  26468
  Copyright terms: Public domain W3C validator