![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hilbert1.1 | Structured version Visualization version GIF version |
Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
hilbert1.1 | ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → ∃𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ (𝔼‘𝑁)) | |
2 | simp2 1137 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ (𝔼‘𝑁)) | |
3 | simp3 1138 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) | |
4 | eqidd 2737 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → (𝑃Line𝑄) = (𝑃Line𝑄)) | |
5 | neeq1 3004 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → (𝑝 ≠ 𝑞 ↔ 𝑃 ≠ 𝑞)) | |
6 | oveq1 7358 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → (𝑝Line𝑞) = (𝑃Line𝑞)) | |
7 | 6 | eqeq2d 2747 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → ((𝑃Line𝑄) = (𝑝Line𝑞) ↔ (𝑃Line𝑄) = (𝑃Line𝑞))) |
8 | 5, 7 | anbi12d 631 | . . . . . 6 ⊢ (𝑝 = 𝑃 → ((𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ (𝑃 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑃Line𝑞)))) |
9 | neeq2 3005 | . . . . . . 7 ⊢ (𝑞 = 𝑄 → (𝑃 ≠ 𝑞 ↔ 𝑃 ≠ 𝑄)) | |
10 | oveq2 7359 | . . . . . . . 8 ⊢ (𝑞 = 𝑄 → (𝑃Line𝑞) = (𝑃Line𝑄)) | |
11 | 10 | eqeq2d 2747 | . . . . . . 7 ⊢ (𝑞 = 𝑄 → ((𝑃Line𝑄) = (𝑃Line𝑞) ↔ (𝑃Line𝑄) = (𝑃Line𝑄))) |
12 | 9, 11 | anbi12d 631 | . . . . . 6 ⊢ (𝑞 = 𝑄 → ((𝑃 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑃Line𝑞)) ↔ (𝑃 ≠ 𝑄 ∧ (𝑃Line𝑄) = (𝑃Line𝑄)))) |
13 | 8, 12 | rspc2ev 3590 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃Line𝑄) = (𝑃Line𝑄))) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) |
14 | 1, 2, 3, 4, 13 | syl112anc 1374 | . . . 4 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) |
15 | fveq2 6839 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁)) | |
16 | 15 | rexeqdv 3312 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ ∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))) |
17 | 15, 16 | rexeqbidv 3318 | . . . . 5 ⊢ (𝑛 = 𝑁 → (∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))) |
18 | 17 | rspcev 3579 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) → ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) |
19 | 14, 18 | sylan2 593 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) |
20 | ellines 34669 | . . 3 ⊢ ((𝑃Line𝑄) ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) | |
21 | 19, 20 | sylibr 233 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → (𝑃Line𝑄) ∈ LinesEE) |
22 | linerflx1 34666 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → 𝑃 ∈ (𝑃Line𝑄)) | |
23 | linerflx2 34668 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → 𝑄 ∈ (𝑃Line𝑄)) | |
24 | eleq2 2826 | . . . 4 ⊢ (𝑥 = (𝑃Line𝑄) → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ (𝑃Line𝑄))) | |
25 | eleq2 2826 | . . . 4 ⊢ (𝑥 = (𝑃Line𝑄) → (𝑄 ∈ 𝑥 ↔ 𝑄 ∈ (𝑃Line𝑄))) | |
26 | 24, 25 | anbi12d 631 | . . 3 ⊢ (𝑥 = (𝑃Line𝑄) → ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ (𝑃 ∈ (𝑃Line𝑄) ∧ 𝑄 ∈ (𝑃Line𝑄)))) |
27 | 26 | rspcev 3579 | . 2 ⊢ (((𝑃Line𝑄) ∈ LinesEE ∧ (𝑃 ∈ (𝑃Line𝑄) ∧ 𝑄 ∈ (𝑃Line𝑄))) → ∃𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
28 | 21, 22, 23, 27 | syl12anc 835 | 1 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → ∃𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ∃wrex 3071 ‘cfv 6493 (class class class)co 7351 ℕcn 12111 𝔼cee 27682 Linecline2 34651 LinesEEclines2 34653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 ax-inf2 9535 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-se 5587 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-isom 6502 df-riota 7307 df-ov 7354 df-oprab 7355 df-mpo 7356 df-om 7795 df-1st 7913 df-2nd 7914 df-frecs 8204 df-wrecs 8235 df-recs 8309 df-rdg 8348 df-1o 8404 df-er 8606 df-ec 8608 df-map 8725 df-en 8842 df-dom 8843 df-sdom 8844 df-fin 8845 df-sup 9336 df-oi 9404 df-card 9833 df-pnf 11149 df-mnf 11150 df-xr 11151 df-ltxr 11152 df-le 11153 df-sub 11345 df-neg 11346 df-div 11771 df-nn 12112 df-2 12174 df-3 12175 df-n0 12372 df-z 12458 df-uz 12722 df-rp 12870 df-ico 13224 df-icc 13225 df-fz 13379 df-fzo 13522 df-seq 13861 df-exp 13922 df-hash 14185 df-cj 14938 df-re 14939 df-im 14940 df-sqrt 15074 df-abs 15075 df-clim 15324 df-sum 15525 df-ee 27685 df-btwn 27686 df-cgr 27687 df-colinear 34556 df-line2 34654 df-lines2 34656 |
This theorem is referenced by: linethrueu 34673 |
Copyright terms: Public domain | W3C validator |