Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hilbert1.1 Structured version   Visualization version   GIF version

Theorem hilbert1.1 34671
Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
hilbert1.1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → ∃𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
Distinct variable groups:   𝑥,𝑃   𝑥,𝑄
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem hilbert1.1
Dummy variables 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → 𝑃 ∈ (𝔼‘𝑁))
2 simp2 1137 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → 𝑄 ∈ (𝔼‘𝑁))
3 simp3 1138 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → 𝑃𝑄)
4 eqidd 2737 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → (𝑃Line𝑄) = (𝑃Line𝑄))
5 neeq1 3004 . . . . . . 7 (𝑝 = 𝑃 → (𝑝𝑞𝑃𝑞))
6 oveq1 7358 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝Line𝑞) = (𝑃Line𝑞))
76eqeq2d 2747 . . . . . . 7 (𝑝 = 𝑃 → ((𝑃Line𝑄) = (𝑝Line𝑞) ↔ (𝑃Line𝑄) = (𝑃Line𝑞)))
85, 7anbi12d 631 . . . . . 6 (𝑝 = 𝑃 → ((𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ (𝑃𝑞 ∧ (𝑃Line𝑄) = (𝑃Line𝑞))))
9 neeq2 3005 . . . . . . 7 (𝑞 = 𝑄 → (𝑃𝑞𝑃𝑄))
10 oveq2 7359 . . . . . . . 8 (𝑞 = 𝑄 → (𝑃Line𝑞) = (𝑃Line𝑄))
1110eqeq2d 2747 . . . . . . 7 (𝑞 = 𝑄 → ((𝑃Line𝑄) = (𝑃Line𝑞) ↔ (𝑃Line𝑄) = (𝑃Line𝑄)))
129, 11anbi12d 631 . . . . . 6 (𝑞 = 𝑄 → ((𝑃𝑞 ∧ (𝑃Line𝑄) = (𝑃Line𝑞)) ↔ (𝑃𝑄 ∧ (𝑃Line𝑄) = (𝑃Line𝑄))))
138, 12rspc2ev 3590 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ (𝑃𝑄 ∧ (𝑃Line𝑄) = (𝑃Line𝑄))) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
141, 2, 3, 4, 13syl112anc 1374 . . . 4 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
15 fveq2 6839 . . . . . 6 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
1615rexeqdv 3312 . . . . . 6 (𝑛 = 𝑁 → (∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ ∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))))
1715, 16rexeqbidv 3318 . . . . 5 (𝑛 = 𝑁 → (∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))))
1817rspcev 3579 . . . 4 ((𝑁 ∈ ℕ ∧ ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) → ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
1914, 18sylan2 593 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
20 ellines 34669 . . 3 ((𝑃Line𝑄) ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
2119, 20sylibr 233 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → (𝑃Line𝑄) ∈ LinesEE)
22 linerflx1 34666 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → 𝑃 ∈ (𝑃Line𝑄))
23 linerflx2 34668 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → 𝑄 ∈ (𝑃Line𝑄))
24 eleq2 2826 . . . 4 (𝑥 = (𝑃Line𝑄) → (𝑃𝑥𝑃 ∈ (𝑃Line𝑄)))
25 eleq2 2826 . . . 4 (𝑥 = (𝑃Line𝑄) → (𝑄𝑥𝑄 ∈ (𝑃Line𝑄)))
2624, 25anbi12d 631 . . 3 (𝑥 = (𝑃Line𝑄) → ((𝑃𝑥𝑄𝑥) ↔ (𝑃 ∈ (𝑃Line𝑄) ∧ 𝑄 ∈ (𝑃Line𝑄))))
2726rspcev 3579 . 2 (((𝑃Line𝑄) ∈ LinesEE ∧ (𝑃 ∈ (𝑃Line𝑄) ∧ 𝑄 ∈ (𝑃Line𝑄))) → ∃𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
2821, 22, 23, 27syl12anc 835 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → ∃𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2941  wrex 3071  cfv 6493  (class class class)co 7351  cn 12111  𝔼cee 27682  Linecline2 34651  LinesEEclines2 34653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-inf2 9535  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-1st 7913  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-1o 8404  df-er 8606  df-ec 8608  df-map 8725  df-en 8842  df-dom 8843  df-sdom 8844  df-fin 8845  df-sup 9336  df-oi 9404  df-card 9833  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-div 11771  df-nn 12112  df-2 12174  df-3 12175  df-n0 12372  df-z 12458  df-uz 12722  df-rp 12870  df-ico 13224  df-icc 13225  df-fz 13379  df-fzo 13522  df-seq 13861  df-exp 13922  df-hash 14185  df-cj 14938  df-re 14939  df-im 14940  df-sqrt 15074  df-abs 15075  df-clim 15324  df-sum 15525  df-ee 27685  df-btwn 27686  df-cgr 27687  df-colinear 34556  df-line2 34654  df-lines2 34656
This theorem is referenced by:  linethrueu  34673
  Copyright terms: Public domain W3C validator