Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hilbert1.1 Structured version   Visualization version   GIF version

Theorem hilbert1.1 33998
Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
hilbert1.1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → ∃𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
Distinct variable groups:   𝑥,𝑃   𝑥,𝑄
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem hilbert1.1
Dummy variables 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1134 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → 𝑃 ∈ (𝔼‘𝑁))
2 simp2 1135 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → 𝑄 ∈ (𝔼‘𝑁))
3 simp3 1136 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → 𝑃𝑄)
4 eqidd 2760 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → (𝑃Line𝑄) = (𝑃Line𝑄))
5 neeq1 3014 . . . . . . 7 (𝑝 = 𝑃 → (𝑝𝑞𝑃𝑞))
6 oveq1 7158 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝Line𝑞) = (𝑃Line𝑞))
76eqeq2d 2770 . . . . . . 7 (𝑝 = 𝑃 → ((𝑃Line𝑄) = (𝑝Line𝑞) ↔ (𝑃Line𝑄) = (𝑃Line𝑞)))
85, 7anbi12d 634 . . . . . 6 (𝑝 = 𝑃 → ((𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ (𝑃𝑞 ∧ (𝑃Line𝑄) = (𝑃Line𝑞))))
9 neeq2 3015 . . . . . . 7 (𝑞 = 𝑄 → (𝑃𝑞𝑃𝑄))
10 oveq2 7159 . . . . . . . 8 (𝑞 = 𝑄 → (𝑃Line𝑞) = (𝑃Line𝑄))
1110eqeq2d 2770 . . . . . . 7 (𝑞 = 𝑄 → ((𝑃Line𝑄) = (𝑃Line𝑞) ↔ (𝑃Line𝑄) = (𝑃Line𝑄)))
129, 11anbi12d 634 . . . . . 6 (𝑞 = 𝑄 → ((𝑃𝑞 ∧ (𝑃Line𝑄) = (𝑃Line𝑞)) ↔ (𝑃𝑄 ∧ (𝑃Line𝑄) = (𝑃Line𝑄))))
138, 12rspc2ev 3554 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ (𝑃𝑄 ∧ (𝑃Line𝑄) = (𝑃Line𝑄))) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
141, 2, 3, 4, 13syl112anc 1372 . . . 4 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
15 fveq2 6659 . . . . . 6 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
1615rexeqdv 3331 . . . . . 6 (𝑛 = 𝑁 → (∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ ∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))))
1715, 16rexeqbidv 3321 . . . . 5 (𝑛 = 𝑁 → (∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))))
1817rspcev 3542 . . . 4 ((𝑁 ∈ ℕ ∧ ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) → ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
1914, 18sylan2 596 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
20 ellines 33996 . . 3 ((𝑃Line𝑄) ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
2119, 20sylibr 237 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → (𝑃Line𝑄) ∈ LinesEE)
22 linerflx1 33993 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → 𝑃 ∈ (𝑃Line𝑄))
23 linerflx2 33995 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → 𝑄 ∈ (𝑃Line𝑄))
24 eleq2 2841 . . . 4 (𝑥 = (𝑃Line𝑄) → (𝑃𝑥𝑃 ∈ (𝑃Line𝑄)))
25 eleq2 2841 . . . 4 (𝑥 = (𝑃Line𝑄) → (𝑄𝑥𝑄 ∈ (𝑃Line𝑄)))
2624, 25anbi12d 634 . . 3 (𝑥 = (𝑃Line𝑄) → ((𝑃𝑥𝑄𝑥) ↔ (𝑃 ∈ (𝑃Line𝑄) ∧ 𝑄 ∈ (𝑃Line𝑄))))
2726rspcev 3542 . 2 (((𝑃Line𝑄) ∈ LinesEE ∧ (𝑃 ∈ (𝑃Line𝑄) ∧ 𝑄 ∈ (𝑃Line𝑄))) → ∃𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
2821, 22, 23, 27syl12anc 836 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → ∃𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2952  wrex 3072  cfv 6336  (class class class)co 7151  cn 11667  𝔼cee 26774  Linecline2 33978  LinesEEclines2 33980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9130  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645  ax-pre-sup 10646
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-er 8300  df-ec 8302  df-map 8419  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-sup 8932  df-oi 9000  df-card 9394  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-div 11329  df-nn 11668  df-2 11730  df-3 11731  df-n0 11928  df-z 12014  df-uz 12276  df-rp 12424  df-ico 12778  df-icc 12779  df-fz 12933  df-fzo 13076  df-seq 13412  df-exp 13473  df-hash 13734  df-cj 14499  df-re 14500  df-im 14501  df-sqrt 14635  df-abs 14636  df-clim 14886  df-sum 15084  df-ee 26777  df-btwn 26778  df-cgr 26779  df-colinear 33883  df-line2 33981  df-lines2 33983
This theorem is referenced by:  linethrueu  34000
  Copyright terms: Public domain W3C validator