| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hilbert1.1 | Structured version Visualization version GIF version | ||
| Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| hilbert1.1 | ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → ∃𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ (𝔼‘𝑁)) | |
| 2 | simp2 1137 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ (𝔼‘𝑁)) | |
| 3 | simp3 1138 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) | |
| 4 | eqidd 2731 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → (𝑃Line𝑄) = (𝑃Line𝑄)) | |
| 5 | neeq1 2988 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → (𝑝 ≠ 𝑞 ↔ 𝑃 ≠ 𝑞)) | |
| 6 | oveq1 7397 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → (𝑝Line𝑞) = (𝑃Line𝑞)) | |
| 7 | 6 | eqeq2d 2741 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → ((𝑃Line𝑄) = (𝑝Line𝑞) ↔ (𝑃Line𝑄) = (𝑃Line𝑞))) |
| 8 | 5, 7 | anbi12d 632 | . . . . . 6 ⊢ (𝑝 = 𝑃 → ((𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ (𝑃 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑃Line𝑞)))) |
| 9 | neeq2 2989 | . . . . . . 7 ⊢ (𝑞 = 𝑄 → (𝑃 ≠ 𝑞 ↔ 𝑃 ≠ 𝑄)) | |
| 10 | oveq2 7398 | . . . . . . . 8 ⊢ (𝑞 = 𝑄 → (𝑃Line𝑞) = (𝑃Line𝑄)) | |
| 11 | 10 | eqeq2d 2741 | . . . . . . 7 ⊢ (𝑞 = 𝑄 → ((𝑃Line𝑄) = (𝑃Line𝑞) ↔ (𝑃Line𝑄) = (𝑃Line𝑄))) |
| 12 | 9, 11 | anbi12d 632 | . . . . . 6 ⊢ (𝑞 = 𝑄 → ((𝑃 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑃Line𝑞)) ↔ (𝑃 ≠ 𝑄 ∧ (𝑃Line𝑄) = (𝑃Line𝑄)))) |
| 13 | 8, 12 | rspc2ev 3604 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃Line𝑄) = (𝑃Line𝑄))) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) |
| 14 | 1, 2, 3, 4, 13 | syl112anc 1376 | . . . 4 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) |
| 15 | fveq2 6861 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁)) | |
| 16 | 15 | rexeqdv 3302 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ ∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))) |
| 17 | 15, 16 | rexeqbidv 3322 | . . . . 5 ⊢ (𝑛 = 𝑁 → (∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))) |
| 18 | 17 | rspcev 3591 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) → ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) |
| 19 | 14, 18 | sylan2 593 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) |
| 20 | ellines 36147 | . . 3 ⊢ ((𝑃Line𝑄) ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) | |
| 21 | 19, 20 | sylibr 234 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → (𝑃Line𝑄) ∈ LinesEE) |
| 22 | linerflx1 36144 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → 𝑃 ∈ (𝑃Line𝑄)) | |
| 23 | linerflx2 36146 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → 𝑄 ∈ (𝑃Line𝑄)) | |
| 24 | eleq2 2818 | . . . 4 ⊢ (𝑥 = (𝑃Line𝑄) → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ (𝑃Line𝑄))) | |
| 25 | eleq2 2818 | . . . 4 ⊢ (𝑥 = (𝑃Line𝑄) → (𝑄 ∈ 𝑥 ↔ 𝑄 ∈ (𝑃Line𝑄))) | |
| 26 | 24, 25 | anbi12d 632 | . . 3 ⊢ (𝑥 = (𝑃Line𝑄) → ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ (𝑃 ∈ (𝑃Line𝑄) ∧ 𝑄 ∈ (𝑃Line𝑄)))) |
| 27 | 26 | rspcev 3591 | . 2 ⊢ (((𝑃Line𝑄) ∈ LinesEE ∧ (𝑃 ∈ (𝑃Line𝑄) ∧ 𝑄 ∈ (𝑃Line𝑄))) → ∃𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
| 28 | 21, 22, 23, 27 | syl12anc 836 | 1 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → ∃𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 ‘cfv 6514 (class class class)co 7390 ℕcn 12193 𝔼cee 28822 Linecline2 36129 LinesEEclines2 36131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-ec 8676 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-ee 28825 df-btwn 28826 df-cgr 28827 df-colinear 36034 df-line2 36132 df-lines2 36134 |
| This theorem is referenced by: linethrueu 36151 |
| Copyright terms: Public domain | W3C validator |