![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hilbert1.1 | Structured version Visualization version GIF version |
Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
hilbert1.1 | ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → ∃𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ (𝔼‘𝑁)) | |
2 | simp2 1134 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ (𝔼‘𝑁)) | |
3 | simp3 1135 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) | |
4 | eqidd 2727 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → (𝑃Line𝑄) = (𝑃Line𝑄)) | |
5 | neeq1 2993 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → (𝑝 ≠ 𝑞 ↔ 𝑃 ≠ 𝑞)) | |
6 | oveq1 7431 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → (𝑝Line𝑞) = (𝑃Line𝑞)) | |
7 | 6 | eqeq2d 2737 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → ((𝑃Line𝑄) = (𝑝Line𝑞) ↔ (𝑃Line𝑄) = (𝑃Line𝑞))) |
8 | 5, 7 | anbi12d 630 | . . . . . 6 ⊢ (𝑝 = 𝑃 → ((𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ (𝑃 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑃Line𝑞)))) |
9 | neeq2 2994 | . . . . . . 7 ⊢ (𝑞 = 𝑄 → (𝑃 ≠ 𝑞 ↔ 𝑃 ≠ 𝑄)) | |
10 | oveq2 7432 | . . . . . . . 8 ⊢ (𝑞 = 𝑄 → (𝑃Line𝑞) = (𝑃Line𝑄)) | |
11 | 10 | eqeq2d 2737 | . . . . . . 7 ⊢ (𝑞 = 𝑄 → ((𝑃Line𝑄) = (𝑃Line𝑞) ↔ (𝑃Line𝑄) = (𝑃Line𝑄))) |
12 | 9, 11 | anbi12d 630 | . . . . . 6 ⊢ (𝑞 = 𝑄 → ((𝑃 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑃Line𝑞)) ↔ (𝑃 ≠ 𝑄 ∧ (𝑃Line𝑄) = (𝑃Line𝑄)))) |
13 | 8, 12 | rspc2ev 3621 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃Line𝑄) = (𝑃Line𝑄))) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) |
14 | 1, 2, 3, 4, 13 | syl112anc 1371 | . . . 4 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) |
15 | fveq2 6901 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁)) | |
16 | 15 | rexeqdv 3316 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ ∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))) |
17 | 15, 16 | rexeqbidv 3331 | . . . . 5 ⊢ (𝑛 = 𝑁 → (∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))) |
18 | 17 | rspcev 3608 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) → ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) |
19 | 14, 18 | sylan2 591 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) |
20 | ellines 35976 | . . 3 ⊢ ((𝑃Line𝑄) ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) | |
21 | 19, 20 | sylibr 233 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → (𝑃Line𝑄) ∈ LinesEE) |
22 | linerflx1 35973 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → 𝑃 ∈ (𝑃Line𝑄)) | |
23 | linerflx2 35975 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → 𝑄 ∈ (𝑃Line𝑄)) | |
24 | eleq2 2815 | . . . 4 ⊢ (𝑥 = (𝑃Line𝑄) → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ (𝑃Line𝑄))) | |
25 | eleq2 2815 | . . . 4 ⊢ (𝑥 = (𝑃Line𝑄) → (𝑄 ∈ 𝑥 ↔ 𝑄 ∈ (𝑃Line𝑄))) | |
26 | 24, 25 | anbi12d 630 | . . 3 ⊢ (𝑥 = (𝑃Line𝑄) → ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ (𝑃 ∈ (𝑃Line𝑄) ∧ 𝑄 ∈ (𝑃Line𝑄)))) |
27 | 26 | rspcev 3608 | . 2 ⊢ (((𝑃Line𝑄) ∈ LinesEE ∧ (𝑃 ∈ (𝑃Line𝑄) ∧ 𝑄 ∈ (𝑃Line𝑄))) → ∃𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
28 | 21, 22, 23, 27 | syl12anc 835 | 1 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → ∃𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∃wrex 3060 ‘cfv 6554 (class class class)co 7424 ℕcn 12264 𝔼cee 28822 Linecline2 35958 LinesEEclines2 35960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-ec 8736 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-ico 13384 df-icc 13385 df-fz 13539 df-fzo 13682 df-seq 14022 df-exp 14082 df-hash 14348 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-clim 15490 df-sum 15691 df-ee 28825 df-btwn 28826 df-cgr 28827 df-colinear 35863 df-line2 35961 df-lines2 35963 |
This theorem is referenced by: linethrueu 35980 |
Copyright terms: Public domain | W3C validator |