Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hilbert1.1 Structured version   Visualization version   GIF version

Theorem hilbert1.1 32637
Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
hilbert1.1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → ∃𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
Distinct variable groups:   𝑥,𝑃   𝑥,𝑄
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem hilbert1.1
Dummy variables 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1166 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → 𝑃 ∈ (𝔼‘𝑁))
2 simp2 1167 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → 𝑄 ∈ (𝔼‘𝑁))
3 simp3 1168 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → 𝑃𝑄)
4 eqidd 2766 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → (𝑃Line𝑄) = (𝑃Line𝑄))
5 neeq1 2999 . . . . . . 7 (𝑝 = 𝑃 → (𝑝𝑞𝑃𝑞))
6 oveq1 6849 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝Line𝑞) = (𝑃Line𝑞))
76eqeq2d 2775 . . . . . . 7 (𝑝 = 𝑃 → ((𝑃Line𝑄) = (𝑝Line𝑞) ↔ (𝑃Line𝑄) = (𝑃Line𝑞)))
85, 7anbi12d 624 . . . . . 6 (𝑝 = 𝑃 → ((𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ (𝑃𝑞 ∧ (𝑃Line𝑄) = (𝑃Line𝑞))))
9 neeq2 3000 . . . . . . 7 (𝑞 = 𝑄 → (𝑃𝑞𝑃𝑄))
10 oveq2 6850 . . . . . . . 8 (𝑞 = 𝑄 → (𝑃Line𝑞) = (𝑃Line𝑄))
1110eqeq2d 2775 . . . . . . 7 (𝑞 = 𝑄 → ((𝑃Line𝑄) = (𝑃Line𝑞) ↔ (𝑃Line𝑄) = (𝑃Line𝑄)))
129, 11anbi12d 624 . . . . . 6 (𝑞 = 𝑄 → ((𝑃𝑞 ∧ (𝑃Line𝑄) = (𝑃Line𝑞)) ↔ (𝑃𝑄 ∧ (𝑃Line𝑄) = (𝑃Line𝑄))))
138, 12rspc2ev 3476 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ (𝑃𝑄 ∧ (𝑃Line𝑄) = (𝑃Line𝑄))) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
141, 2, 3, 4, 13syl112anc 1493 . . . 4 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
15 fveq2 6375 . . . . . 6 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
1615rexeqdv 3293 . . . . . 6 (𝑛 = 𝑁 → (∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ ∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))))
1715, 16rexeqbidv 3301 . . . . 5 (𝑛 = 𝑁 → (∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))))
1817rspcev 3461 . . . 4 ((𝑁 ∈ ℕ ∧ ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) → ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
1914, 18sylan2 586 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
20 ellines 32635 . . 3 ((𝑃Line𝑄) ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
2119, 20sylibr 225 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → (𝑃Line𝑄) ∈ LinesEE)
22 linerflx1 32632 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → 𝑃 ∈ (𝑃Line𝑄))
23 linerflx2 32634 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → 𝑄 ∈ (𝑃Line𝑄))
24 eleq2 2833 . . . 4 (𝑥 = (𝑃Line𝑄) → (𝑃𝑥𝑃 ∈ (𝑃Line𝑄)))
25 eleq2 2833 . . . 4 (𝑥 = (𝑃Line𝑄) → (𝑄𝑥𝑄 ∈ (𝑃Line𝑄)))
2624, 25anbi12d 624 . . 3 (𝑥 = (𝑃Line𝑄) → ((𝑃𝑥𝑄𝑥) ↔ (𝑃 ∈ (𝑃Line𝑄) ∧ 𝑄 ∈ (𝑃Line𝑄))))
2726rspcev 3461 . 2 (((𝑃Line𝑄) ∈ LinesEE ∧ (𝑃 ∈ (𝑃Line𝑄) ∧ 𝑄 ∈ (𝑃Line𝑄))) → ∃𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
2821, 22, 23, 27syl12anc 865 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → ∃𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wrex 3056  cfv 6068  (class class class)co 6842  cn 11274  𝔼cee 26059  Linecline2 32617  LinesEEclines2 32619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-ec 7949  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-clim 14506  df-sum 14704  df-ee 26062  df-btwn 26063  df-cgr 26064  df-colinear 32522  df-line2 32620  df-lines2 32622
This theorem is referenced by:  linethrueu  32639
  Copyright terms: Public domain W3C validator