Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hilbert1.1 Structured version   Visualization version   GIF version

Theorem hilbert1.1 32800
Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
hilbert1.1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → ∃𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
Distinct variable groups:   𝑥,𝑃   𝑥,𝑄
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem hilbert1.1
Dummy variables 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1172 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → 𝑃 ∈ (𝔼‘𝑁))
2 simp2 1173 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → 𝑄 ∈ (𝔼‘𝑁))
3 simp3 1174 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → 𝑃𝑄)
4 eqidd 2826 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → (𝑃Line𝑄) = (𝑃Line𝑄))
5 neeq1 3061 . . . . . . 7 (𝑝 = 𝑃 → (𝑝𝑞𝑃𝑞))
6 oveq1 6912 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝Line𝑞) = (𝑃Line𝑞))
76eqeq2d 2835 . . . . . . 7 (𝑝 = 𝑃 → ((𝑃Line𝑄) = (𝑝Line𝑞) ↔ (𝑃Line𝑄) = (𝑃Line𝑞)))
85, 7anbi12d 626 . . . . . 6 (𝑝 = 𝑃 → ((𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ (𝑃𝑞 ∧ (𝑃Line𝑄) = (𝑃Line𝑞))))
9 neeq2 3062 . . . . . . 7 (𝑞 = 𝑄 → (𝑃𝑞𝑃𝑄))
10 oveq2 6913 . . . . . . . 8 (𝑞 = 𝑄 → (𝑃Line𝑞) = (𝑃Line𝑄))
1110eqeq2d 2835 . . . . . . 7 (𝑞 = 𝑄 → ((𝑃Line𝑄) = (𝑃Line𝑞) ↔ (𝑃Line𝑄) = (𝑃Line𝑄)))
129, 11anbi12d 626 . . . . . 6 (𝑞 = 𝑄 → ((𝑃𝑞 ∧ (𝑃Line𝑄) = (𝑃Line𝑞)) ↔ (𝑃𝑄 ∧ (𝑃Line𝑄) = (𝑃Line𝑄))))
138, 12rspc2ev 3541 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ (𝑃𝑄 ∧ (𝑃Line𝑄) = (𝑃Line𝑄))) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
141, 2, 3, 4, 13syl112anc 1499 . . . 4 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
15 fveq2 6433 . . . . . 6 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
1615rexeqdv 3357 . . . . . 6 (𝑛 = 𝑁 → (∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ ∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))))
1715, 16rexeqbidv 3365 . . . . 5 (𝑛 = 𝑁 → (∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))))
1817rspcev 3526 . . . 4 ((𝑁 ∈ ℕ ∧ ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) → ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
1914, 18sylan2 588 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
20 ellines 32798 . . 3 ((𝑃Line𝑄) ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
2119, 20sylibr 226 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → (𝑃Line𝑄) ∈ LinesEE)
22 linerflx1 32795 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → 𝑃 ∈ (𝑃Line𝑄))
23 linerflx2 32797 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → 𝑄 ∈ (𝑃Line𝑄))
24 eleq2 2895 . . . 4 (𝑥 = (𝑃Line𝑄) → (𝑃𝑥𝑃 ∈ (𝑃Line𝑄)))
25 eleq2 2895 . . . 4 (𝑥 = (𝑃Line𝑄) → (𝑄𝑥𝑄 ∈ (𝑃Line𝑄)))
2624, 25anbi12d 626 . . 3 (𝑥 = (𝑃Line𝑄) → ((𝑃𝑥𝑄𝑥) ↔ (𝑃 ∈ (𝑃Line𝑄) ∧ 𝑄 ∈ (𝑃Line𝑄))))
2726rspcev 3526 . 2 (((𝑃Line𝑄) ∈ LinesEE ∧ (𝑃 ∈ (𝑃Line𝑄) ∧ 𝑄 ∈ (𝑃Line𝑄))) → ∃𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
2821, 22, 23, 27syl12anc 872 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → ∃𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  wne 2999  wrex 3118  cfv 6123  (class class class)co 6905  cn 11350  𝔼cee 26187  Linecline2 32780  LinesEEclines2 32782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-ec 8011  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-seq 13096  df-exp 13155  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-clim 14596  df-sum 14794  df-ee 26190  df-btwn 26191  df-cgr 26192  df-colinear 32685  df-line2 32783  df-lines2 32785
This theorem is referenced by:  linethrueu  32802
  Copyright terms: Public domain W3C validator