![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hilbert1.1 | Structured version Visualization version GIF version |
Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
hilbert1.1 | ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → ∃𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ (𝔼‘𝑁)) | |
2 | simp2 1134 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ (𝔼‘𝑁)) | |
3 | simp3 1135 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) | |
4 | eqidd 2726 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → (𝑃Line𝑄) = (𝑃Line𝑄)) | |
5 | neeq1 2993 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → (𝑝 ≠ 𝑞 ↔ 𝑃 ≠ 𝑞)) | |
6 | oveq1 7420 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → (𝑝Line𝑞) = (𝑃Line𝑞)) | |
7 | 6 | eqeq2d 2736 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → ((𝑃Line𝑄) = (𝑝Line𝑞) ↔ (𝑃Line𝑄) = (𝑃Line𝑞))) |
8 | 5, 7 | anbi12d 630 | . . . . . 6 ⊢ (𝑝 = 𝑃 → ((𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ (𝑃 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑃Line𝑞)))) |
9 | neeq2 2994 | . . . . . . 7 ⊢ (𝑞 = 𝑄 → (𝑃 ≠ 𝑞 ↔ 𝑃 ≠ 𝑄)) | |
10 | oveq2 7421 | . . . . . . . 8 ⊢ (𝑞 = 𝑄 → (𝑃Line𝑞) = (𝑃Line𝑄)) | |
11 | 10 | eqeq2d 2736 | . . . . . . 7 ⊢ (𝑞 = 𝑄 → ((𝑃Line𝑄) = (𝑃Line𝑞) ↔ (𝑃Line𝑄) = (𝑃Line𝑄))) |
12 | 9, 11 | anbi12d 630 | . . . . . 6 ⊢ (𝑞 = 𝑄 → ((𝑃 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑃Line𝑞)) ↔ (𝑃 ≠ 𝑄 ∧ (𝑃Line𝑄) = (𝑃Line𝑄)))) |
13 | 8, 12 | rspc2ev 3616 | . . . . 5 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃Line𝑄) = (𝑃Line𝑄))) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) |
14 | 1, 2, 3, 4, 13 | syl112anc 1371 | . . . 4 ⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) |
15 | fveq2 6890 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁)) | |
16 | 15 | rexeqdv 3316 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ ∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))) |
17 | 15, 16 | rexeqbidv 3331 | . . . . 5 ⊢ (𝑛 = 𝑁 → (∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))) |
18 | 17 | rspcev 3603 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) → ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) |
19 | 14, 18 | sylan2 591 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) |
20 | ellines 35801 | . . 3 ⊢ ((𝑃Line𝑄) ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) | |
21 | 19, 20 | sylibr 233 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → (𝑃Line𝑄) ∈ LinesEE) |
22 | linerflx1 35798 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → 𝑃 ∈ (𝑃Line𝑄)) | |
23 | linerflx2 35800 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → 𝑄 ∈ (𝑃Line𝑄)) | |
24 | eleq2 2814 | . . . 4 ⊢ (𝑥 = (𝑃Line𝑄) → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ (𝑃Line𝑄))) | |
25 | eleq2 2814 | . . . 4 ⊢ (𝑥 = (𝑃Line𝑄) → (𝑄 ∈ 𝑥 ↔ 𝑄 ∈ (𝑃Line𝑄))) | |
26 | 24, 25 | anbi12d 630 | . . 3 ⊢ (𝑥 = (𝑃Line𝑄) → ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ (𝑃 ∈ (𝑃Line𝑄) ∧ 𝑄 ∈ (𝑃Line𝑄)))) |
27 | 26 | rspcev 3603 | . 2 ⊢ (((𝑃Line𝑄) ∈ LinesEE ∧ (𝑃 ∈ (𝑃Line𝑄) ∧ 𝑄 ∈ (𝑃Line𝑄))) → ∃𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
28 | 21, 22, 23, 27 | syl12anc 835 | 1 ⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → ∃𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ∃wrex 3060 ‘cfv 6543 (class class class)co 7413 ℕcn 12237 𝔼cee 28738 Linecline2 35783 LinesEEclines2 35785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-inf2 9659 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-ec 8720 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9460 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-n0 12498 df-z 12584 df-uz 12848 df-rp 13002 df-ico 13357 df-icc 13358 df-fz 13512 df-fzo 13655 df-seq 13994 df-exp 14054 df-hash 14317 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-clim 15459 df-sum 15660 df-ee 28741 df-btwn 28742 df-cgr 28743 df-colinear 35688 df-line2 35786 df-lines2 35788 |
This theorem is referenced by: linethrueu 35805 |
Copyright terms: Public domain | W3C validator |