Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem21 Structured version   Visualization version   GIF version

Theorem knoppndvlem21 32962
Description: Lemma for knoppndv 32964. (Contributed by Asger C. Ipsen, 18-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem21.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem21.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem21.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem21.g 𝐺 = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
knoppndvlem21.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem21.d (𝜑𝐷 ∈ ℝ+)
knoppndvlem21.e (𝜑𝐸 ∈ ℝ+)
knoppndvlem21.h (𝜑𝐻 ∈ ℝ)
knoppndvlem21.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem21.n (𝜑𝑁 ∈ ℕ)
knoppndvlem21.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
knoppndvlem21.2 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) < 𝐷)
knoppndvlem21.3 (𝜑𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺))
Assertion
Ref Expression
knoppndvlem21 (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
Distinct variable groups:   𝐶,𝑖,𝑛,𝑦   𝐷,𝑎,𝑏   𝐸,𝑎,𝑏   𝑖,𝐹,𝑤   𝐻,𝑎,𝑏   𝐽,𝑎,𝑏   𝑖,𝐽,𝑛,𝑤,𝑦   𝑥,𝐽,𝑖,𝑤   𝑁,𝑎,𝑏   𝑖,𝑁,𝑛,𝑤,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝑊,𝑎,𝑏   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑎,𝑏)   𝐶(𝑥,𝑤,𝑎,𝑏)   𝐷(𝑥,𝑦,𝑤,𝑖,𝑛)   𝑇(𝑥,𝑤,𝑖,𝑎,𝑏)   𝐸(𝑥,𝑦,𝑤,𝑖,𝑛)   𝐹(𝑥,𝑦,𝑛,𝑎,𝑏)   𝐺(𝑥,𝑦,𝑤,𝑖,𝑛,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑤,𝑖,𝑛)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem21
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2765 . . 3 ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)
2 eqid 2765 . . 3 ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))
3 knoppndvlem21.j . . 3 (𝜑𝐽 ∈ ℕ0)
4 knoppndvlem21.h . . 3 (𝜑𝐻 ∈ ℝ)
5 knoppndvlem21.n . . 3 (𝜑𝑁 ∈ ℕ)
61, 2, 3, 4, 5knoppndvlem19 32960 . 2 (𝜑 → ∃𝑚 ∈ ℤ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
7 2re 11346 . . . . . . . . . . 11 2 ∈ ℝ
87a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ)
95nnred 11291 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
108, 9remulcld 10324 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℝ)
11 2pos 11382 . . . . . . . . . . . 12 0 < 2
1211a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 2)
135nngt0d 11321 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
148, 9, 12, 13mulgt0d 10446 . . . . . . . . . 10 (𝜑 → 0 < (2 · 𝑁))
1514gt0ne0d 10846 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ≠ 0)
163nn0zd 11727 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
1716znegcld 11731 . . . . . . . . 9 (𝜑 → -𝐽 ∈ ℤ)
1810, 15, 17reexpclzd 13241 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ)
1918rehalfcld 11525 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ)
2019adantr 472 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ)
21 simpr 477 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
2221zred 11729 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ ℝ)
2320, 22remulcld 10324 . . . . 5 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ)
2423adantrr 708 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ)
25 peano2re 10463 . . . . . . . 8 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
2622, 25syl 17 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → (𝑚 + 1) ∈ ℝ)
2720, 26jca 507 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ ∧ (𝑚 + 1) ∈ ℝ))
28 remulcl 10274 . . . . . 6 (((((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ ∧ (𝑚 + 1) ∈ ℝ) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ)
2927, 28syl 17 . . . . 5 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ)
3029adantrr 708 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ)
31 simprr 789 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
323adantr 472 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 𝐽 ∈ ℕ0)
335adantr 472 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 𝑁 ∈ ℕ)
341, 2, 32, 21, 33knoppndvlem16 32957 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) = (((2 · 𝑁)↑-𝐽) / 2))
35 knoppndvlem21.2 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) < 𝐷)
3635adantr 472 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑁)↑-𝐽) / 2) < 𝐷)
3734, 36eqbrtrd 4831 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷)
3810, 17, 143jca 1158 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)))
39 expgt0 13100 . . . . . . . . . . . . 13 (((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)) → 0 < ((2 · 𝑁)↑-𝐽))
4038, 39syl 17 . . . . . . . . . . . 12 (𝜑 → 0 < ((2 · 𝑁)↑-𝐽))
4118, 8, 40, 12divgt0d 11213 . . . . . . . . . . 11 (𝜑 → 0 < (((2 · 𝑁)↑-𝐽) / 2))
4241adantr 472 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → 0 < (((2 · 𝑁)↑-𝐽) / 2))
4334eqcomd 2771 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑁)↑-𝐽) / 2) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
4442, 43breqtrd 4835 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 0 < (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
4523, 29posdifd 10868 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) < ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ↔ 0 < (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
4644, 45mpbird 248 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) < ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))
4723, 46ltned 10427 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))
4837, 47jca 507 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
4948adantrr 708 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
50 knoppndvlem21.e . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
5150rpred 12070 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
5251adantr 472 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → 𝐸 ∈ ℝ)
53 knoppndvlem21.c . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ (-1(,)1))
5453knoppndvlem3 32944 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
5554simpld 488 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
5655recnd 10322 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
5756abscld 14460 . . . . . . . . . . 11 (𝜑 → (abs‘𝐶) ∈ ℝ)
5810, 57remulcld 10324 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
5958, 3reexpcld 13232 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) ∈ ℝ)
60 knoppndvlem21.g . . . . . . . . . . 11 𝐺 = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
6160a1i 11 . . . . . . . . . 10 (𝜑𝐺 = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
62 knoppndvlem21.1 . . . . . . . . . . . 12 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
6353, 5, 62knoppndvlem20 32961 . . . . . . . . . . 11 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)
6463rpred 12070 . . . . . . . . . 10 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
6561, 64eqeltrd 2844 . . . . . . . . 9 (𝜑𝐺 ∈ ℝ)
6659, 65remulcld 10324 . . . . . . . 8 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) ∈ ℝ)
6766adantr 472 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) ∈ ℝ)
68 knoppndvlem21.t . . . . . . . . . . 11 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
69 knoppndvlem21.f . . . . . . . . . . 11 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
70 knoppndvlem21.w . . . . . . . . . . 11 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
7155adantr 472 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → 𝐶 ∈ ℝ)
7254simprd 489 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐶) < 1)
7372adantr 472 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → (abs‘𝐶) < 1)
7468, 69, 70, 29, 33, 71, 73knoppcld 32934 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∈ ℂ)
7568, 69, 70, 23, 33, 71, 73knoppcld 32934 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) ∈ ℂ)
7674, 75subcld 10646 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → ((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) ∈ ℂ)
7776abscld 14460 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) ∈ ℝ)
7834, 20eqeltrd 2844 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) ∈ ℝ)
7944gt0ne0d 10846 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) ≠ 0)
8077, 78, 79redivcld 11107 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) ∈ ℝ)
81 knoppndvlem21.3 . . . . . . . 8 (𝜑𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺))
8281adantr 472 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺))
8360oveq2i 6853 . . . . . . . . 9 ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
8483a1i 11 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
8553adantr 472 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 𝐶 ∈ (-1(,)1))
8662adantr 472 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 1 < (𝑁 · (abs‘𝐶)))
8768, 69, 70, 1, 2, 85, 32, 21, 33, 86knoppndvlem17 32958 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
8884, 87eqbrtrd 4831 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
8952, 67, 80, 82, 88letrd 10448 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
9089adantrr 708 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
9131, 49, 903jca 1158 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
9224, 30, 913jca 1158 . . 3 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ ∧ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))))
93 breq1 4812 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑎𝐻 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻))
9493anbi1d 623 . . . . 5 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((𝑎𝐻𝐻𝑏) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏)))
95 oveq2 6850 . . . . . . 7 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑏𝑎) = (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
9695breq1d 4819 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((𝑏𝑎) < 𝐷 ↔ (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷))
97 neeq1 2999 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑎𝑏 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏))
9896, 97anbi12d 624 . . . . 5 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (((𝑏𝑎) < 𝐷𝑎𝑏) ↔ ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏)))
99 fveq2 6375 . . . . . . . . 9 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑊𝑎) = (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
10099oveq2d 6858 . . . . . . . 8 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((𝑊𝑏) − (𝑊𝑎)) = ((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
101100fveq2d 6379 . . . . . . 7 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (abs‘((𝑊𝑏) − (𝑊𝑎))) = (abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
102101, 95oveq12d 6860 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎)) = ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
103102breq2d 4821 . . . . 5 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎)) ↔ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
10494, 98, 1033anbi123d 1560 . . . 4 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))) ↔ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏) ∧ ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))))
105 breq2 4813 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝐻𝑏𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
106105anbi2d 622 . . . . 5 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))))
107 oveq1 6849 . . . . . . 7 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
108107breq1d 4819 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ↔ (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷))
109 neeq2 3000 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
110108, 109anbi12d 624 . . . . 5 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏) ↔ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))))
111 fveq2 6375 . . . . . . . 8 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝑊𝑏) = (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
112111fvoveq1d 6864 . . . . . . 7 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) = (abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
113112, 107oveq12d 6860 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) = ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
114113breq2d 4821 . . . . 5 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) ↔ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
115106, 110, 1143anbi123d 1560 . . . 4 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏) ∧ ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) ↔ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))))
116104, 115rspc2ev 3476 . . 3 ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ ∧ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
11792, 116syl 17 . 2 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
1186, 117rexlimddv 3182 1 (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wrex 3056   class class class wbr 4809  cmpt 4888  cfv 6068  (class class class)co 6842  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194   < clt 10328  cle 10329  cmin 10520  -cneg 10521   / cdiv 10938  cn 11274  2c2 11327  0cn0 11538  cz 11624  +crp 12028  (,)cioo 12377  cfl 12799  cexp 13067  abscabs 14259  Σcsu 14701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-limsup 14487  df-clim 14504  df-rlim 14505  df-sum 14702  df-dvds 15266  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-xrs 16428  df-qtop 16433  df-imas 16434  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-mulg 17808  df-cntz 18013  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cn 21311  df-cnp 21312  df-tx 21645  df-hmeo 21838  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-ulm 24422
This theorem is referenced by:  knoppndvlem22  32963
  Copyright terms: Public domain W3C validator