Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem21 Structured version   Visualization version   GIF version

Theorem knoppndvlem21 33105
Description: Lemma for knoppndv 33107. (Contributed by Asger C. Ipsen, 18-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem21.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem21.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem21.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem21.g 𝐺 = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
knoppndvlem21.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem21.d (𝜑𝐷 ∈ ℝ+)
knoppndvlem21.e (𝜑𝐸 ∈ ℝ+)
knoppndvlem21.h (𝜑𝐻 ∈ ℝ)
knoppndvlem21.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem21.n (𝜑𝑁 ∈ ℕ)
knoppndvlem21.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
knoppndvlem21.2 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) < 𝐷)
knoppndvlem21.3 (𝜑𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺))
Assertion
Ref Expression
knoppndvlem21 (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
Distinct variable groups:   𝐶,𝑖,𝑛,𝑦   𝐷,𝑎,𝑏   𝐸,𝑎,𝑏   𝑖,𝐹,𝑤   𝐻,𝑎,𝑏   𝐽,𝑎,𝑏   𝑖,𝐽,𝑛,𝑤,𝑦   𝑥,𝐽,𝑖,𝑤   𝑁,𝑎,𝑏   𝑖,𝑁,𝑛,𝑤,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝑊,𝑎,𝑏   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑎,𝑏)   𝐶(𝑥,𝑤,𝑎,𝑏)   𝐷(𝑥,𝑦,𝑤,𝑖,𝑛)   𝑇(𝑥,𝑤,𝑖,𝑎,𝑏)   𝐸(𝑥,𝑦,𝑤,𝑖,𝑛)   𝐹(𝑥,𝑦,𝑛,𝑎,𝑏)   𝐺(𝑥,𝑦,𝑤,𝑖,𝑛,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑤,𝑖,𝑛)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem21
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2777 . . 3 ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)
2 eqid 2777 . . 3 ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))
3 knoppndvlem21.j . . 3 (𝜑𝐽 ∈ ℕ0)
4 knoppndvlem21.h . . 3 (𝜑𝐻 ∈ ℝ)
5 knoppndvlem21.n . . 3 (𝜑𝑁 ∈ ℕ)
61, 2, 3, 4, 5knoppndvlem19 33103 . 2 (𝜑 → ∃𝑚 ∈ ℤ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
7 2re 11449 . . . . . . . . . . 11 2 ∈ ℝ
87a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ)
95nnred 11391 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
108, 9remulcld 10407 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℝ)
11 2pos 11485 . . . . . . . . . . . 12 0 < 2
1211a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 2)
135nngt0d 11424 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
148, 9, 12, 13mulgt0d 10531 . . . . . . . . . 10 (𝜑 → 0 < (2 · 𝑁))
1514gt0ne0d 10939 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ≠ 0)
163nn0zd 11832 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
1716znegcld 11836 . . . . . . . . 9 (𝜑 → -𝐽 ∈ ℤ)
1810, 15, 17reexpclzd 13355 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ)
1918rehalfcld 11629 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ)
2019adantr 474 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ)
21 simpr 479 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
2221zred 11834 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ ℝ)
2320, 22remulcld 10407 . . . . 5 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ)
2423adantrr 707 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ)
25 peano2re 10549 . . . . . . . 8 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
2622, 25syl 17 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → (𝑚 + 1) ∈ ℝ)
2720, 26jca 507 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ ∧ (𝑚 + 1) ∈ ℝ))
28 remulcl 10357 . . . . . 6 (((((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ ∧ (𝑚 + 1) ∈ ℝ) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ)
2927, 28syl 17 . . . . 5 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ)
3029adantrr 707 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ)
31 simprr 763 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
323adantr 474 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 𝐽 ∈ ℕ0)
335adantr 474 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 𝑁 ∈ ℕ)
341, 2, 32, 21, 33knoppndvlem16 33100 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) = (((2 · 𝑁)↑-𝐽) / 2))
35 knoppndvlem21.2 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) < 𝐷)
3635adantr 474 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑁)↑-𝐽) / 2) < 𝐷)
3734, 36eqbrtrd 4908 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷)
3810, 17, 143jca 1119 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)))
39 expgt0 13211 . . . . . . . . . . . . 13 (((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)) → 0 < ((2 · 𝑁)↑-𝐽))
4038, 39syl 17 . . . . . . . . . . . 12 (𝜑 → 0 < ((2 · 𝑁)↑-𝐽))
4118, 8, 40, 12divgt0d 11313 . . . . . . . . . . 11 (𝜑 → 0 < (((2 · 𝑁)↑-𝐽) / 2))
4241adantr 474 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → 0 < (((2 · 𝑁)↑-𝐽) / 2))
4334eqcomd 2783 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑁)↑-𝐽) / 2) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
4442, 43breqtrd 4912 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 0 < (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
4523, 29posdifd 10962 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) < ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ↔ 0 < (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
4644, 45mpbird 249 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) < ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))
4723, 46ltned 10512 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))
4837, 47jca 507 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
4948adantrr 707 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
50 knoppndvlem21.e . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
5150rpred 12181 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
5251adantr 474 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → 𝐸 ∈ ℝ)
53 knoppndvlem21.c . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ (-1(,)1))
5453knoppndvlem3 33087 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
5554simpld 490 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
5655recnd 10405 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
5756abscld 14583 . . . . . . . . . . 11 (𝜑 → (abs‘𝐶) ∈ ℝ)
5810, 57remulcld 10407 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
5958, 3reexpcld 13344 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) ∈ ℝ)
60 knoppndvlem21.g . . . . . . . . . . 11 𝐺 = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
6160a1i 11 . . . . . . . . . 10 (𝜑𝐺 = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
62 knoppndvlem21.1 . . . . . . . . . . . 12 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
6353, 5, 62knoppndvlem20 33104 . . . . . . . . . . 11 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)
6463rpred 12181 . . . . . . . . . 10 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
6561, 64eqeltrd 2858 . . . . . . . . 9 (𝜑𝐺 ∈ ℝ)
6659, 65remulcld 10407 . . . . . . . 8 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) ∈ ℝ)
6766adantr 474 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) ∈ ℝ)
68 knoppndvlem21.t . . . . . . . . . . 11 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
69 knoppndvlem21.f . . . . . . . . . . 11 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
70 knoppndvlem21.w . . . . . . . . . . 11 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
7155adantr 474 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → 𝐶 ∈ ℝ)
7254simprd 491 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐶) < 1)
7372adantr 474 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → (abs‘𝐶) < 1)
7468, 69, 70, 29, 33, 71, 73knoppcld 33078 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∈ ℂ)
7568, 69, 70, 23, 33, 71, 73knoppcld 33078 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) ∈ ℂ)
7674, 75subcld 10734 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → ((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) ∈ ℂ)
7776abscld 14583 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) ∈ ℝ)
7834, 20eqeltrd 2858 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) ∈ ℝ)
7944gt0ne0d 10939 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) ≠ 0)
8077, 78, 79redivcld 11203 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) ∈ ℝ)
81 knoppndvlem21.3 . . . . . . . 8 (𝜑𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺))
8281adantr 474 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺))
8360oveq2i 6933 . . . . . . . . 9 ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
8483a1i 11 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
8553adantr 474 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 𝐶 ∈ (-1(,)1))
8662adantr 474 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 1 < (𝑁 · (abs‘𝐶)))
8768, 69, 70, 1, 2, 85, 32, 21, 33, 86knoppndvlem17 33101 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
8884, 87eqbrtrd 4908 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
8952, 67, 80, 82, 88letrd 10533 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
9089adantrr 707 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
9131, 49, 903jca 1119 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
9224, 30, 913jca 1119 . . 3 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ ∧ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))))
93 breq1 4889 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑎𝐻 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻))
9493anbi1d 623 . . . . 5 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((𝑎𝐻𝐻𝑏) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏)))
95 oveq2 6930 . . . . . . 7 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑏𝑎) = (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
9695breq1d 4896 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((𝑏𝑎) < 𝐷 ↔ (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷))
97 neeq1 3030 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑎𝑏 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏))
9896, 97anbi12d 624 . . . . 5 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (((𝑏𝑎) < 𝐷𝑎𝑏) ↔ ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏)))
99 fveq2 6446 . . . . . . . . 9 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑊𝑎) = (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
10099oveq2d 6938 . . . . . . . 8 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((𝑊𝑏) − (𝑊𝑎)) = ((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
101100fveq2d 6450 . . . . . . 7 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (abs‘((𝑊𝑏) − (𝑊𝑎))) = (abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
102101, 95oveq12d 6940 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎)) = ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
103102breq2d 4898 . . . . 5 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎)) ↔ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
10494, 98, 1033anbi123d 1509 . . . 4 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))) ↔ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏) ∧ ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))))
105 breq2 4890 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝐻𝑏𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
106105anbi2d 622 . . . . 5 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))))
107 oveq1 6929 . . . . . . 7 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
108107breq1d 4896 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ↔ (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷))
109 neeq2 3031 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
110108, 109anbi12d 624 . . . . 5 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏) ↔ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))))
111 fveq2 6446 . . . . . . . 8 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝑊𝑏) = (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
112111fvoveq1d 6944 . . . . . . 7 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) = (abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
113112, 107oveq12d 6940 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) = ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
114113breq2d 4898 . . . . 5 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) ↔ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
115106, 110, 1143anbi123d 1509 . . . 4 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏) ∧ ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) ↔ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))))
116104, 115rspc2ev 3525 . . 3 ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ ∧ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
11792, 116syl 17 . 2 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
1186, 117rexlimddv 3217 1 (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2106  wne 2968  wrex 3090   class class class wbr 4886  cmpt 4965  cfv 6135  (class class class)co 6922  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277   < clt 10411  cle 10412  cmin 10606  -cneg 10607   / cdiv 11032  cn 11374  2c2 11430  0cn0 11642  cz 11728  +crp 12137  (,)cioo 12487  cfl 12910  cexp 13178  abscabs 14381  Σcsu 14824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825  df-dvds 15388  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cn 21439  df-cnp 21440  df-tx 21774  df-hmeo 21967  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-ulm 24568
This theorem is referenced by:  knoppndvlem22  33106
  Copyright terms: Public domain W3C validator