Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem21 Structured version   Visualization version   GIF version

Theorem knoppndvlem21 36520
Description: Lemma for knoppndv 36522. (Contributed by Asger C. Ipsen, 18-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem21.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem21.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem21.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem21.g 𝐺 = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
knoppndvlem21.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem21.d (𝜑𝐷 ∈ ℝ+)
knoppndvlem21.e (𝜑𝐸 ∈ ℝ+)
knoppndvlem21.h (𝜑𝐻 ∈ ℝ)
knoppndvlem21.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem21.n (𝜑𝑁 ∈ ℕ)
knoppndvlem21.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
knoppndvlem21.2 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) < 𝐷)
knoppndvlem21.3 (𝜑𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺))
Assertion
Ref Expression
knoppndvlem21 (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
Distinct variable groups:   𝐶,𝑖,𝑛,𝑦   𝐷,𝑎,𝑏   𝐸,𝑎,𝑏   𝑖,𝐹,𝑤   𝐻,𝑎,𝑏   𝐽,𝑎,𝑏   𝑖,𝐽,𝑛,𝑤,𝑦   𝑥,𝐽,𝑖,𝑤   𝑁,𝑎,𝑏   𝑖,𝑁,𝑛,𝑤,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝑊,𝑎,𝑏   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑎,𝑏)   𝐶(𝑥,𝑤,𝑎,𝑏)   𝐷(𝑥,𝑦,𝑤,𝑖,𝑛)   𝑇(𝑥,𝑤,𝑖,𝑎,𝑏)   𝐸(𝑥,𝑦,𝑤,𝑖,𝑛)   𝐹(𝑥,𝑦,𝑛,𝑎,𝑏)   𝐺(𝑥,𝑦,𝑤,𝑖,𝑛,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑤,𝑖,𝑛)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem21
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)
2 eqid 2729 . . 3 ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))
3 knoppndvlem21.j . . 3 (𝜑𝐽 ∈ ℕ0)
4 knoppndvlem21.h . . 3 (𝜑𝐻 ∈ ℝ)
5 knoppndvlem21.n . . 3 (𝜑𝑁 ∈ ℕ)
61, 2, 3, 4, 5knoppndvlem19 36518 . 2 (𝜑 → ∃𝑚 ∈ ℤ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
7 2re 12260 . . . . . . . . . . 11 2 ∈ ℝ
87a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ)
95nnred 12201 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
108, 9remulcld 11204 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℝ)
11 2pos 12289 . . . . . . . . . . . 12 0 < 2
1211a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 2)
135nngt0d 12235 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
148, 9, 12, 13mulgt0d 11329 . . . . . . . . . 10 (𝜑 → 0 < (2 · 𝑁))
1514gt0ne0d 11742 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ≠ 0)
163nn0zd 12555 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
1716znegcld 12640 . . . . . . . . 9 (𝜑 → -𝐽 ∈ ℤ)
1810, 15, 17reexpclzd 14214 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ)
1918rehalfcld 12429 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ)
2019adantr 480 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ)
21 simpr 484 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
2221zred 12638 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ ℝ)
2320, 22remulcld 11204 . . . . 5 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ)
2423adantrr 717 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ)
25 peano2re 11347 . . . . . . . 8 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
2622, 25syl 17 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → (𝑚 + 1) ∈ ℝ)
2720, 26jca 511 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ ∧ (𝑚 + 1) ∈ ℝ))
28 remulcl 11153 . . . . . 6 (((((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ ∧ (𝑚 + 1) ∈ ℝ) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ)
2927, 28syl 17 . . . . 5 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ)
3029adantrr 717 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ)
31 simprr 772 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
323adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 𝐽 ∈ ℕ0)
335adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 𝑁 ∈ ℕ)
341, 2, 32, 21, 33knoppndvlem16 36515 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) = (((2 · 𝑁)↑-𝐽) / 2))
35 knoppndvlem21.2 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) < 𝐷)
3635adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑁)↑-𝐽) / 2) < 𝐷)
3734, 36eqbrtrd 5129 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷)
3810, 17, 143jca 1128 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)))
39 expgt0 14060 . . . . . . . . . . . . 13 (((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)) → 0 < ((2 · 𝑁)↑-𝐽))
4038, 39syl 17 . . . . . . . . . . . 12 (𝜑 → 0 < ((2 · 𝑁)↑-𝐽))
4118, 8, 40, 12divgt0d 12118 . . . . . . . . . . 11 (𝜑 → 0 < (((2 · 𝑁)↑-𝐽) / 2))
4241adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → 0 < (((2 · 𝑁)↑-𝐽) / 2))
4334eqcomd 2735 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑁)↑-𝐽) / 2) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
4442, 43breqtrd 5133 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 0 < (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
4523, 29posdifd 11765 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) < ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ↔ 0 < (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
4644, 45mpbird 257 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) < ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))
4723, 46ltned 11310 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))
4837, 47jca 511 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
4948adantrr 717 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
50 knoppndvlem21.e . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
5150rpred 12995 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
5251adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → 𝐸 ∈ ℝ)
53 knoppndvlem21.c . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ (-1(,)1))
5453knoppndvlem3 36502 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
5554simpld 494 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
5655recnd 11202 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
5756abscld 15405 . . . . . . . . . . 11 (𝜑 → (abs‘𝐶) ∈ ℝ)
5810, 57remulcld 11204 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
5958, 3reexpcld 14128 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) ∈ ℝ)
60 knoppndvlem21.g . . . . . . . . . . 11 𝐺 = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
6160a1i 11 . . . . . . . . . 10 (𝜑𝐺 = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
62 knoppndvlem21.1 . . . . . . . . . . . 12 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
6353, 5, 62knoppndvlem20 36519 . . . . . . . . . . 11 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)
6463rpred 12995 . . . . . . . . . 10 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
6561, 64eqeltrd 2828 . . . . . . . . 9 (𝜑𝐺 ∈ ℝ)
6659, 65remulcld 11204 . . . . . . . 8 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) ∈ ℝ)
6766adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) ∈ ℝ)
68 knoppndvlem21.t . . . . . . . . . . 11 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
69 knoppndvlem21.f . . . . . . . . . . 11 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
70 knoppndvlem21.w . . . . . . . . . . 11 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
7155adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → 𝐶 ∈ ℝ)
7254simprd 495 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐶) < 1)
7372adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → (abs‘𝐶) < 1)
7468, 69, 70, 29, 33, 71, 73knoppcld 36493 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∈ ℂ)
7568, 69, 70, 23, 33, 71, 73knoppcld 36493 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) ∈ ℂ)
7674, 75subcld 11533 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → ((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) ∈ ℂ)
7776abscld 15405 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) ∈ ℝ)
7834, 20eqeltrd 2828 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) ∈ ℝ)
7944gt0ne0d 11742 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) ≠ 0)
8077, 78, 79redivcld 12010 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) ∈ ℝ)
81 knoppndvlem21.3 . . . . . . . 8 (𝜑𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺))
8281adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺))
8360oveq2i 7398 . . . . . . . . 9 ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
8483a1i 11 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
8553adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 𝐶 ∈ (-1(,)1))
8662adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 1 < (𝑁 · (abs‘𝐶)))
8768, 69, 70, 1, 2, 85, 32, 21, 33, 86knoppndvlem17 36516 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
8884, 87eqbrtrd 5129 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
8952, 67, 80, 82, 88letrd 11331 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
9089adantrr 717 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
9131, 49, 903jca 1128 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
9224, 30, 913jca 1128 . . 3 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ ∧ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))))
93 breq1 5110 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑎𝐻 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻))
9493anbi1d 631 . . . . 5 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((𝑎𝐻𝐻𝑏) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏)))
95 oveq2 7395 . . . . . . 7 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑏𝑎) = (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
9695breq1d 5117 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((𝑏𝑎) < 𝐷 ↔ (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷))
97 neeq1 2987 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑎𝑏 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏))
9896, 97anbi12d 632 . . . . 5 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (((𝑏𝑎) < 𝐷𝑎𝑏) ↔ ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏)))
99 fveq2 6858 . . . . . . . . 9 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑊𝑎) = (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
10099oveq2d 7403 . . . . . . . 8 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((𝑊𝑏) − (𝑊𝑎)) = ((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
101100fveq2d 6862 . . . . . . 7 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (abs‘((𝑊𝑏) − (𝑊𝑎))) = (abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
102101, 95oveq12d 7405 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎)) = ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
103102breq2d 5119 . . . . 5 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎)) ↔ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
10494, 98, 1033anbi123d 1438 . . . 4 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))) ↔ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏) ∧ ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))))
105 breq2 5111 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝐻𝑏𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
106105anbi2d 630 . . . . 5 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))))
107 oveq1 7394 . . . . . . 7 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
108107breq1d 5117 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ↔ (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷))
109 neeq2 2988 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
110108, 109anbi12d 632 . . . . 5 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏) ↔ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))))
111 fveq2 6858 . . . . . . . 8 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝑊𝑏) = (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
112111fvoveq1d 7409 . . . . . . 7 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) = (abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
113112, 107oveq12d 7405 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) = ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
114113breq2d 5119 . . . . 5 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) ↔ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
115106, 110, 1143anbi123d 1438 . . . 4 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏) ∧ ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) ↔ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))))
116104, 115rspc2ev 3601 . . 3 ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ ∧ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
11792, 116syl 17 . 2 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
1186, 117rexlimddv 3140 1 (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  +crp 12951  (,)cioo 13306  cfl 13752  cexp 14026  abscabs 15200  Σcsu 15652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-dvds 16223  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cn 23114  df-cnp 23115  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-ulm 26286
This theorem is referenced by:  knoppndvlem22  36521
  Copyright terms: Public domain W3C validator