![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnm0r | Structured version Visualization version GIF version |
Description: Multiplication with zero. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
nnm0r | ⊢ (𝐴 ∈ ω → (∅ ·𝑜 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6886 | . . 3 ⊢ (𝑥 = ∅ → (∅ ·𝑜 𝑥) = (∅ ·𝑜 ∅)) | |
2 | 1 | eqeq1d 2801 | . 2 ⊢ (𝑥 = ∅ → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 ∅) = ∅)) |
3 | oveq2 6886 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ ·𝑜 𝑥) = (∅ ·𝑜 𝑦)) | |
4 | 3 | eqeq1d 2801 | . 2 ⊢ (𝑥 = 𝑦 → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 𝑦) = ∅)) |
5 | oveq2 6886 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ ·𝑜 𝑥) = (∅ ·𝑜 suc 𝑦)) | |
6 | 5 | eqeq1d 2801 | . 2 ⊢ (𝑥 = suc 𝑦 → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 suc 𝑦) = ∅)) |
7 | oveq2 6886 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ ·𝑜 𝑥) = (∅ ·𝑜 𝐴)) | |
8 | 7 | eqeq1d 2801 | . 2 ⊢ (𝑥 = 𝐴 → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 𝐴) = ∅)) |
9 | 0elon 5994 | . . 3 ⊢ ∅ ∈ On | |
10 | om0 7837 | . . 3 ⊢ (∅ ∈ On → (∅ ·𝑜 ∅) = ∅) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ (∅ ·𝑜 ∅) = ∅ |
12 | oveq1 6885 | . . . 4 ⊢ ((∅ ·𝑜 𝑦) = ∅ → ((∅ ·𝑜 𝑦) +𝑜 ∅) = (∅ +𝑜 ∅)) | |
13 | oa0 7836 | . . . . 5 ⊢ (∅ ∈ On → (∅ +𝑜 ∅) = ∅) | |
14 | 9, 13 | ax-mp 5 | . . . 4 ⊢ (∅ +𝑜 ∅) = ∅ |
15 | 12, 14 | syl6eq 2849 | . . 3 ⊢ ((∅ ·𝑜 𝑦) = ∅ → ((∅ ·𝑜 𝑦) +𝑜 ∅) = ∅) |
16 | peano1 7319 | . . . . 5 ⊢ ∅ ∈ ω | |
17 | nnmsuc 7927 | . . . . 5 ⊢ ((∅ ∈ ω ∧ 𝑦 ∈ ω) → (∅ ·𝑜 suc 𝑦) = ((∅ ·𝑜 𝑦) +𝑜 ∅)) | |
18 | 16, 17 | mpan 682 | . . . 4 ⊢ (𝑦 ∈ ω → (∅ ·𝑜 suc 𝑦) = ((∅ ·𝑜 𝑦) +𝑜 ∅)) |
19 | 18 | eqeq1d 2801 | . . 3 ⊢ (𝑦 ∈ ω → ((∅ ·𝑜 suc 𝑦) = ∅ ↔ ((∅ ·𝑜 𝑦) +𝑜 ∅) = ∅)) |
20 | 15, 19 | syl5ibr 238 | . 2 ⊢ (𝑦 ∈ ω → ((∅ ·𝑜 𝑦) = ∅ → (∅ ·𝑜 suc 𝑦) = ∅)) |
21 | 2, 4, 6, 8, 11, 20 | finds 7326 | 1 ⊢ (𝐴 ∈ ω → (∅ ·𝑜 𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ∅c0 4115 Oncon0 5941 suc csuc 5943 (class class class)co 6878 ωcom 7299 +𝑜 coa 7796 ·𝑜 comu 7797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-oadd 7803 df-omul 7804 |
This theorem is referenced by: nnmcom 7946 nnmord 7952 nnmwordi 7955 |
Copyright terms: Public domain | W3C validator |