Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oaordnr Structured version   Visualization version   GIF version

Theorem oaordnr 43279
Description: When the same ordinal is added on the right, ordering of the sums is not equivalent to the ordering of the ordinals on the left. Remark 3.9 of [Schloeder] p. 8. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oaordnr 𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐))
Distinct variable group:   𝑎,𝑏,𝑐

Proof of Theorem oaordnr
StepHypRef Expression
1 oaordnrex 43278 . 2 ¬ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω))
2 0elon 6362 . . 3 ∅ ∈ On
3 1on 8400 . . . 4 1o ∈ On
4 omelon 9542 . . . . 5 ω ∈ On
5 oveq2 7357 . . . . . . . . 9 (𝑐 = ω → (∅ +o 𝑐) = (∅ +o ω))
6 oveq2 7357 . . . . . . . . 9 (𝑐 = ω → (1o +o 𝑐) = (1o +o ω))
75, 6eleq12d 2822 . . . . . . . 8 (𝑐 = ω → ((∅ +o 𝑐) ∈ (1o +o 𝑐) ↔ (∅ +o ω) ∈ (1o +o ω)))
87bibi2d 342 . . . . . . 7 (𝑐 = ω → ((∅ ∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐)) ↔ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω))))
98notbid 318 . . . . . 6 (𝑐 = ω → (¬ (∅ ∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐)) ↔ ¬ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω))))
109rspcev 3577 . . . . 5 ((ω ∈ On ∧ ¬ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω))) → ∃𝑐 ∈ On ¬ (∅ ∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐)))
114, 10mpan 690 . . . 4 (¬ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω)) → ∃𝑐 ∈ On ¬ (∅ ∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐)))
12 eleq2 2817 . . . . . . . 8 (𝑏 = 1o → (∅ ∈ 𝑏 ↔ ∅ ∈ 1o))
13 oveq1 7356 . . . . . . . . 9 (𝑏 = 1o → (𝑏 +o 𝑐) = (1o +o 𝑐))
1413eleq2d 2814 . . . . . . . 8 (𝑏 = 1o → ((∅ +o 𝑐) ∈ (𝑏 +o 𝑐) ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐)))
1512, 14bibi12d 345 . . . . . . 7 (𝑏 = 1o → ((∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐)) ↔ (∅ ∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐))))
1615notbid 318 . . . . . 6 (𝑏 = 1o → (¬ (∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐)) ↔ ¬ (∅ ∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐))))
1716rexbidv 3153 . . . . 5 (𝑏 = 1o → (∃𝑐 ∈ On ¬ (∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐)) ↔ ∃𝑐 ∈ On ¬ (∅ ∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐))))
1817rspcev 3577 . . . 4 ((1o ∈ On ∧ ∃𝑐 ∈ On ¬ (∅ ∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐))) → ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐)))
193, 11, 18sylancr 587 . . 3 (¬ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω)) → ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐)))
20 eleq1 2816 . . . . . . . 8 (𝑎 = ∅ → (𝑎𝑏 ↔ ∅ ∈ 𝑏))
21 oveq1 7356 . . . . . . . . 9 (𝑎 = ∅ → (𝑎 +o 𝑐) = (∅ +o 𝑐))
2221eleq1d 2813 . . . . . . . 8 (𝑎 = ∅ → ((𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐) ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐)))
2320, 22bibi12d 345 . . . . . . 7 (𝑎 = ∅ → ((𝑎𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)) ↔ (∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐))))
2423notbid 318 . . . . . 6 (𝑎 = ∅ → (¬ (𝑎𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)) ↔ ¬ (∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐))))
2524rexbidv 3153 . . . . 5 (𝑎 = ∅ → (∃𝑐 ∈ On ¬ (𝑎𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)) ↔ ∃𝑐 ∈ On ¬ (∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐))))
2625rexbidv 3153 . . . 4 (𝑎 = ∅ → (∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)) ↔ ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐))))
2726rspcev 3577 . . 3 ((∅ ∈ On ∧ ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐))) → ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)))
282, 19, 27sylancr 587 . 2 (¬ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω)) → ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)))
291, 28ax-mp 5 1 𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  wrex 3053  c0 4284  Oncon0 6307  (class class class)co 7349  ωcom 7799  1oc1o 8381   +o coa 8385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator