Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oaordnr Structured version   Visualization version   GIF version

Theorem oaordnr 43258
Description: When the same ordinal is added on the right, ordering of the sums is not equivalent to the ordering of the ordinals on the left. Remark 3.9 of [Schloeder] p. 8. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oaordnr 𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐))
Distinct variable group:   𝑎,𝑏,𝑐

Proof of Theorem oaordnr
StepHypRef Expression
1 oaordnrex 43257 . 2 ¬ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω))
2 0elon 6449 . . 3 ∅ ∈ On
3 1on 8534 . . . 4 1o ∈ On
4 omelon 9715 . . . . 5 ω ∈ On
5 oveq2 7456 . . . . . . . . 9 (𝑐 = ω → (∅ +o 𝑐) = (∅ +o ω))
6 oveq2 7456 . . . . . . . . 9 (𝑐 = ω → (1o +o 𝑐) = (1o +o ω))
75, 6eleq12d 2838 . . . . . . . 8 (𝑐 = ω → ((∅ +o 𝑐) ∈ (1o +o 𝑐) ↔ (∅ +o ω) ∈ (1o +o ω)))
87bibi2d 342 . . . . . . 7 (𝑐 = ω → ((∅ ∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐)) ↔ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω))))
98notbid 318 . . . . . 6 (𝑐 = ω → (¬ (∅ ∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐)) ↔ ¬ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω))))
109rspcev 3635 . . . . 5 ((ω ∈ On ∧ ¬ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω))) → ∃𝑐 ∈ On ¬ (∅ ∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐)))
114, 10mpan 689 . . . 4 (¬ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω)) → ∃𝑐 ∈ On ¬ (∅ ∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐)))
12 eleq2 2833 . . . . . . . 8 (𝑏 = 1o → (∅ ∈ 𝑏 ↔ ∅ ∈ 1o))
13 oveq1 7455 . . . . . . . . 9 (𝑏 = 1o → (𝑏 +o 𝑐) = (1o +o 𝑐))
1413eleq2d 2830 . . . . . . . 8 (𝑏 = 1o → ((∅ +o 𝑐) ∈ (𝑏 +o 𝑐) ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐)))
1512, 14bibi12d 345 . . . . . . 7 (𝑏 = 1o → ((∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐)) ↔ (∅ ∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐))))
1615notbid 318 . . . . . 6 (𝑏 = 1o → (¬ (∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐)) ↔ ¬ (∅ ∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐))))
1716rexbidv 3185 . . . . 5 (𝑏 = 1o → (∃𝑐 ∈ On ¬ (∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐)) ↔ ∃𝑐 ∈ On ¬ (∅ ∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐))))
1817rspcev 3635 . . . 4 ((1o ∈ On ∧ ∃𝑐 ∈ On ¬ (∅ ∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐))) → ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐)))
193, 11, 18sylancr 586 . . 3 (¬ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω)) → ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐)))
20 eleq1 2832 . . . . . . . 8 (𝑎 = ∅ → (𝑎𝑏 ↔ ∅ ∈ 𝑏))
21 oveq1 7455 . . . . . . . . 9 (𝑎 = ∅ → (𝑎 +o 𝑐) = (∅ +o 𝑐))
2221eleq1d 2829 . . . . . . . 8 (𝑎 = ∅ → ((𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐) ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐)))
2320, 22bibi12d 345 . . . . . . 7 (𝑎 = ∅ → ((𝑎𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)) ↔ (∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐))))
2423notbid 318 . . . . . 6 (𝑎 = ∅ → (¬ (𝑎𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)) ↔ ¬ (∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐))))
2524rexbidv 3185 . . . . 5 (𝑎 = ∅ → (∃𝑐 ∈ On ¬ (𝑎𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)) ↔ ∃𝑐 ∈ On ¬ (∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐))))
2625rexbidv 3185 . . . 4 (𝑎 = ∅ → (∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)) ↔ ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐))))
2726rspcev 3635 . . 3 ((∅ ∈ On ∧ ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐))) → ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)))
282, 19, 27sylancr 586 . 2 (¬ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω)) → ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)))
291, 28ax-mp 5 1 𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1537  wcel 2108  wrex 3076  c0 4352  Oncon0 6395  (class class class)co 7448  ωcom 7903  1oc1o 8515   +o coa 8519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator