Proof of Theorem oaordnr
| Step | Hyp | Ref
| Expression |
| 1 | | oaordnrex 43313 |
. 2
⊢ ¬
(∅ ∈ 1o ↔ (∅ +o ω) ∈
(1o +o ω)) |
| 2 | | 0elon 6437 |
. . 3
⊢ ∅
∈ On |
| 3 | | 1on 8519 |
. . . 4
⊢
1o ∈ On |
| 4 | | omelon 9687 |
. . . . 5
⊢ ω
∈ On |
| 5 | | oveq2 7440 |
. . . . . . . . 9
⊢ (𝑐 = ω → (∅
+o 𝑐) = (∅
+o ω)) |
| 6 | | oveq2 7440 |
. . . . . . . . 9
⊢ (𝑐 = ω → (1o
+o 𝑐) =
(1o +o ω)) |
| 7 | 5, 6 | eleq12d 2834 |
. . . . . . . 8
⊢ (𝑐 = ω → ((∅
+o 𝑐) ∈
(1o +o 𝑐) ↔ (∅ +o ω)
∈ (1o +o ω))) |
| 8 | 7 | bibi2d 342 |
. . . . . . 7
⊢ (𝑐 = ω → ((∅
∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐)) ↔ (∅ ∈
1o ↔ (∅ +o ω) ∈ (1o
+o ω)))) |
| 9 | 8 | notbid 318 |
. . . . . 6
⊢ (𝑐 = ω → (¬
(∅ ∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐)) ↔ ¬ (∅ ∈
1o ↔ (∅ +o ω) ∈ (1o
+o ω)))) |
| 10 | 9 | rspcev 3621 |
. . . . 5
⊢ ((ω
∈ On ∧ ¬ (∅ ∈ 1o ↔ (∅
+o ω) ∈ (1o +o ω))) →
∃𝑐 ∈ On ¬
(∅ ∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐))) |
| 11 | 4, 10 | mpan 690 |
. . . 4
⊢ (¬
(∅ ∈ 1o ↔ (∅ +o ω) ∈
(1o +o ω)) → ∃𝑐 ∈ On ¬ (∅ ∈
1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐))) |
| 12 | | eleq2 2829 |
. . . . . . . 8
⊢ (𝑏 = 1o → (∅
∈ 𝑏 ↔ ∅
∈ 1o)) |
| 13 | | oveq1 7439 |
. . . . . . . . 9
⊢ (𝑏 = 1o → (𝑏 +o 𝑐) = (1o +o
𝑐)) |
| 14 | 13 | eleq2d 2826 |
. . . . . . . 8
⊢ (𝑏 = 1o →
((∅ +o 𝑐)
∈ (𝑏 +o
𝑐) ↔ (∅
+o 𝑐) ∈
(1o +o 𝑐))) |
| 15 | 12, 14 | bibi12d 345 |
. . . . . . 7
⊢ (𝑏 = 1o →
((∅ ∈ 𝑏 ↔
(∅ +o 𝑐)
∈ (𝑏 +o
𝑐)) ↔ (∅ ∈
1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐)))) |
| 16 | 15 | notbid 318 |
. . . . . 6
⊢ (𝑏 = 1o → (¬
(∅ ∈ 𝑏 ↔
(∅ +o 𝑐)
∈ (𝑏 +o
𝑐)) ↔ ¬ (∅
∈ 1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐)))) |
| 17 | 16 | rexbidv 3178 |
. . . . 5
⊢ (𝑏 = 1o →
(∃𝑐 ∈ On ¬
(∅ ∈ 𝑏 ↔
(∅ +o 𝑐)
∈ (𝑏 +o
𝑐)) ↔ ∃𝑐 ∈ On ¬ (∅ ∈
1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐)))) |
| 18 | 17 | rspcev 3621 |
. . . 4
⊢
((1o ∈ On ∧ ∃𝑐 ∈ On ¬ (∅ ∈
1o ↔ (∅ +o 𝑐) ∈ (1o +o 𝑐))) → ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (∅ ∈
𝑏 ↔ (∅
+o 𝑐) ∈
(𝑏 +o 𝑐))) |
| 19 | 3, 11, 18 | sylancr 587 |
. . 3
⊢ (¬
(∅ ∈ 1o ↔ (∅ +o ω) ∈
(1o +o ω)) → ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (∅ ∈ 𝑏 ↔ (∅ +o
𝑐) ∈ (𝑏 +o 𝑐))) |
| 20 | | eleq1 2828 |
. . . . . . . 8
⊢ (𝑎 = ∅ → (𝑎 ∈ 𝑏 ↔ ∅ ∈ 𝑏)) |
| 21 | | oveq1 7439 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → (𝑎 +o 𝑐) = (∅ +o 𝑐)) |
| 22 | 21 | eleq1d 2825 |
. . . . . . . 8
⊢ (𝑎 = ∅ → ((𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐) ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐))) |
| 23 | 20, 22 | bibi12d 345 |
. . . . . . 7
⊢ (𝑎 = ∅ → ((𝑎 ∈ 𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)) ↔ (∅ ∈ 𝑏 ↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐)))) |
| 24 | 23 | notbid 318 |
. . . . . 6
⊢ (𝑎 = ∅ → (¬ (𝑎 ∈ 𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)) ↔ ¬ (∅ ∈ 𝑏 ↔ (∅ +o
𝑐) ∈ (𝑏 +o 𝑐)))) |
| 25 | 24 | rexbidv 3178 |
. . . . 5
⊢ (𝑎 = ∅ → (∃𝑐 ∈ On ¬ (𝑎 ∈ 𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)) ↔ ∃𝑐 ∈ On ¬ (∅ ∈ 𝑏 ↔ (∅ +o
𝑐) ∈ (𝑏 +o 𝑐)))) |
| 26 | 25 | rexbidv 3178 |
. . . 4
⊢ (𝑎 = ∅ → (∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎 ∈ 𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)) ↔ ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (∅ ∈ 𝑏 ↔ (∅ +o
𝑐) ∈ (𝑏 +o 𝑐)))) |
| 27 | 26 | rspcev 3621 |
. . 3
⊢ ((∅
∈ On ∧ ∃𝑏
∈ On ∃𝑐 ∈
On ¬ (∅ ∈ 𝑏
↔ (∅ +o 𝑐) ∈ (𝑏 +o 𝑐))) → ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎 ∈ 𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐))) |
| 28 | 2, 19, 27 | sylancr 587 |
. 2
⊢ (¬
(∅ ∈ 1o ↔ (∅ +o ω) ∈
(1o +o ω)) → ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎 ∈ 𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐))) |
| 29 | 1, 28 | ax-mp 5 |
1
⊢
∃𝑎 ∈ On
∃𝑏 ∈ On
∃𝑐 ∈ On ¬
(𝑎 ∈ 𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)) |