Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oenass Structured version   Visualization version   GIF version

Theorem oenass 43323
Description: Ordinal exponentiation is not associative. Remark 4.6 of [Schloeder] p. 14. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
oenass 𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐)
Distinct variable group:   𝑎,𝑏,𝑐

Proof of Theorem oenass
StepHypRef Expression
1 oenassex 43322 . 2 ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)
2 2on 8525 . . 3 2o ∈ On
3 0elon 6443 . . . . 5 ∅ ∈ On
4 oveq2 7443 . . . . . . . . 9 (𝑐 = ∅ → (2oo 𝑐) = (2oo ∅))
54oveq2d 7451 . . . . . . . 8 (𝑐 = ∅ → (2oo (2oo 𝑐)) = (2oo (2oo ∅)))
6 oveq2 7443 . . . . . . . 8 (𝑐 = ∅ → ((2oo 2o) ↑o 𝑐) = ((2oo 2o) ↑o ∅))
75, 6eqeq12d 2752 . . . . . . 7 (𝑐 = ∅ → ((2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐) ↔ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)))
87notbid 318 . . . . . 6 (𝑐 = ∅ → (¬ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐) ↔ ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)))
98rspcev 3623 . . . . 5 ((∅ ∈ On ∧ ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)) → ∃𝑐 ∈ On ¬ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐))
103, 9mpan 690 . . . 4 (¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅) → ∃𝑐 ∈ On ¬ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐))
11 oveq1 7442 . . . . . . . . 9 (𝑏 = 2o → (𝑏o 𝑐) = (2oo 𝑐))
1211oveq2d 7451 . . . . . . . 8 (𝑏 = 2o → (2oo (𝑏o 𝑐)) = (2oo (2oo 𝑐)))
13 oveq2 7443 . . . . . . . . 9 (𝑏 = 2o → (2oo 𝑏) = (2oo 2o))
1413oveq1d 7450 . . . . . . . 8 (𝑏 = 2o → ((2oo 𝑏) ↑o 𝑐) = ((2oo 2o) ↑o 𝑐))
1512, 14eqeq12d 2752 . . . . . . 7 (𝑏 = 2o → ((2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐) ↔ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐)))
1615notbid 318 . . . . . 6 (𝑏 = 2o → (¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐) ↔ ¬ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐)))
1716rexbidv 3178 . . . . 5 (𝑏 = 2o → (∃𝑐 ∈ On ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐) ↔ ∃𝑐 ∈ On ¬ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐)))
1817rspcev 3623 . . . 4 ((2o ∈ On ∧ ∃𝑐 ∈ On ¬ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐)) → ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐))
192, 10, 18sylancr 587 . . 3 (¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅) → ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐))
20 oveq1 7442 . . . . . . . 8 (𝑎 = 2o → (𝑎o (𝑏o 𝑐)) = (2oo (𝑏o 𝑐)))
21 oveq1 7442 . . . . . . . . 9 (𝑎 = 2o → (𝑎o 𝑏) = (2oo 𝑏))
2221oveq1d 7450 . . . . . . . 8 (𝑎 = 2o → ((𝑎o 𝑏) ↑o 𝑐) = ((2oo 𝑏) ↑o 𝑐))
2320, 22eqeq12d 2752 . . . . . . 7 (𝑎 = 2o → ((𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐) ↔ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐)))
2423notbid 318 . . . . . 6 (𝑎 = 2o → (¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐) ↔ ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐)))
2524rexbidv 3178 . . . . 5 (𝑎 = 2o → (∃𝑐 ∈ On ¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐) ↔ ∃𝑐 ∈ On ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐)))
2625rexbidv 3178 . . . 4 (𝑎 = 2o → (∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐) ↔ ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐)))
2726rspcev 3623 . . 3 ((2o ∈ On ∧ ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐)) → ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐))
282, 19, 27sylancr 587 . 2 (¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅) → ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐))
291, 28ax-mp 5 1 𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1538  wcel 2107  wrex 3069  c0 4340  Oncon0 6389  (class class class)co 7435  2oc2o 8505  o coe 8510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pr 5439  ax-un 7758  ax-reg 9636
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-2o 8512  df-oadd 8515  df-omul 8516  df-oexp 8517
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator