Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oenass Structured version   Visualization version   GIF version

Theorem oenass 43301
Description: Ordinal exponentiation is not associative. Remark 4.6 of [Schloeder] p. 14. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
oenass 𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐)
Distinct variable group:   𝑎,𝑏,𝑐

Proof of Theorem oenass
StepHypRef Expression
1 oenassex 43300 . 2 ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)
2 2on 8424 . . 3 2o ∈ On
3 0elon 6375 . . . . 5 ∅ ∈ On
4 oveq2 7377 . . . . . . . . 9 (𝑐 = ∅ → (2oo 𝑐) = (2oo ∅))
54oveq2d 7385 . . . . . . . 8 (𝑐 = ∅ → (2oo (2oo 𝑐)) = (2oo (2oo ∅)))
6 oveq2 7377 . . . . . . . 8 (𝑐 = ∅ → ((2oo 2o) ↑o 𝑐) = ((2oo 2o) ↑o ∅))
75, 6eqeq12d 2745 . . . . . . 7 (𝑐 = ∅ → ((2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐) ↔ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)))
87notbid 318 . . . . . 6 (𝑐 = ∅ → (¬ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐) ↔ ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)))
98rspcev 3585 . . . . 5 ((∅ ∈ On ∧ ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)) → ∃𝑐 ∈ On ¬ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐))
103, 9mpan 690 . . . 4 (¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅) → ∃𝑐 ∈ On ¬ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐))
11 oveq1 7376 . . . . . . . . 9 (𝑏 = 2o → (𝑏o 𝑐) = (2oo 𝑐))
1211oveq2d 7385 . . . . . . . 8 (𝑏 = 2o → (2oo (𝑏o 𝑐)) = (2oo (2oo 𝑐)))
13 oveq2 7377 . . . . . . . . 9 (𝑏 = 2o → (2oo 𝑏) = (2oo 2o))
1413oveq1d 7384 . . . . . . . 8 (𝑏 = 2o → ((2oo 𝑏) ↑o 𝑐) = ((2oo 2o) ↑o 𝑐))
1512, 14eqeq12d 2745 . . . . . . 7 (𝑏 = 2o → ((2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐) ↔ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐)))
1615notbid 318 . . . . . 6 (𝑏 = 2o → (¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐) ↔ ¬ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐)))
1716rexbidv 3157 . . . . 5 (𝑏 = 2o → (∃𝑐 ∈ On ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐) ↔ ∃𝑐 ∈ On ¬ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐)))
1817rspcev 3585 . . . 4 ((2o ∈ On ∧ ∃𝑐 ∈ On ¬ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐)) → ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐))
192, 10, 18sylancr 587 . . 3 (¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅) → ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐))
20 oveq1 7376 . . . . . . . 8 (𝑎 = 2o → (𝑎o (𝑏o 𝑐)) = (2oo (𝑏o 𝑐)))
21 oveq1 7376 . . . . . . . . 9 (𝑎 = 2o → (𝑎o 𝑏) = (2oo 𝑏))
2221oveq1d 7384 . . . . . . . 8 (𝑎 = 2o → ((𝑎o 𝑏) ↑o 𝑐) = ((2oo 𝑏) ↑o 𝑐))
2320, 22eqeq12d 2745 . . . . . . 7 (𝑎 = 2o → ((𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐) ↔ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐)))
2423notbid 318 . . . . . 6 (𝑎 = 2o → (¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐) ↔ ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐)))
2524rexbidv 3157 . . . . 5 (𝑎 = 2o → (∃𝑐 ∈ On ¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐) ↔ ∃𝑐 ∈ On ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐)))
2625rexbidv 3157 . . . 4 (𝑎 = 2o → (∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐) ↔ ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐)))
2726rspcev 3585 . . 3 ((2o ∈ On ∧ ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐)) → ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐))
282, 19, 27sylancr 587 . 2 (¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅) → ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐))
291, 28ax-mp 5 1 𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  wrex 3053  c0 4292  Oncon0 6320  (class class class)co 7369  2oc2o 8405  o coe 8410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-reg 9521
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-oexp 8417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator