Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oenass Structured version   Visualization version   GIF version

Theorem oenass 43280
Description: Ordinal exponentiation is not associative. Remark 4.6 of [Schloeder] p. 14. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
oenass 𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐)
Distinct variable group:   𝑎,𝑏,𝑐

Proof of Theorem oenass
StepHypRef Expression
1 oenassex 43279 . 2 ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)
2 2on 8457 . . 3 2o ∈ On
3 0elon 6395 . . . . 5 ∅ ∈ On
4 oveq2 7402 . . . . . . . . 9 (𝑐 = ∅ → (2oo 𝑐) = (2oo ∅))
54oveq2d 7410 . . . . . . . 8 (𝑐 = ∅ → (2oo (2oo 𝑐)) = (2oo (2oo ∅)))
6 oveq2 7402 . . . . . . . 8 (𝑐 = ∅ → ((2oo 2o) ↑o 𝑐) = ((2oo 2o) ↑o ∅))
75, 6eqeq12d 2746 . . . . . . 7 (𝑐 = ∅ → ((2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐) ↔ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)))
87notbid 318 . . . . . 6 (𝑐 = ∅ → (¬ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐) ↔ ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)))
98rspcev 3597 . . . . 5 ((∅ ∈ On ∧ ¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅)) → ∃𝑐 ∈ On ¬ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐))
103, 9mpan 690 . . . 4 (¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅) → ∃𝑐 ∈ On ¬ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐))
11 oveq1 7401 . . . . . . . . 9 (𝑏 = 2o → (𝑏o 𝑐) = (2oo 𝑐))
1211oveq2d 7410 . . . . . . . 8 (𝑏 = 2o → (2oo (𝑏o 𝑐)) = (2oo (2oo 𝑐)))
13 oveq2 7402 . . . . . . . . 9 (𝑏 = 2o → (2oo 𝑏) = (2oo 2o))
1413oveq1d 7409 . . . . . . . 8 (𝑏 = 2o → ((2oo 𝑏) ↑o 𝑐) = ((2oo 2o) ↑o 𝑐))
1512, 14eqeq12d 2746 . . . . . . 7 (𝑏 = 2o → ((2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐) ↔ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐)))
1615notbid 318 . . . . . 6 (𝑏 = 2o → (¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐) ↔ ¬ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐)))
1716rexbidv 3159 . . . . 5 (𝑏 = 2o → (∃𝑐 ∈ On ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐) ↔ ∃𝑐 ∈ On ¬ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐)))
1817rspcev 3597 . . . 4 ((2o ∈ On ∧ ∃𝑐 ∈ On ¬ (2oo (2oo 𝑐)) = ((2oo 2o) ↑o 𝑐)) → ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐))
192, 10, 18sylancr 587 . . 3 (¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅) → ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐))
20 oveq1 7401 . . . . . . . 8 (𝑎 = 2o → (𝑎o (𝑏o 𝑐)) = (2oo (𝑏o 𝑐)))
21 oveq1 7401 . . . . . . . . 9 (𝑎 = 2o → (𝑎o 𝑏) = (2oo 𝑏))
2221oveq1d 7409 . . . . . . . 8 (𝑎 = 2o → ((𝑎o 𝑏) ↑o 𝑐) = ((2oo 𝑏) ↑o 𝑐))
2320, 22eqeq12d 2746 . . . . . . 7 (𝑎 = 2o → ((𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐) ↔ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐)))
2423notbid 318 . . . . . 6 (𝑎 = 2o → (¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐) ↔ ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐)))
2524rexbidv 3159 . . . . 5 (𝑎 = 2o → (∃𝑐 ∈ On ¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐) ↔ ∃𝑐 ∈ On ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐)))
2625rexbidv 3159 . . . 4 (𝑎 = 2o → (∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐) ↔ ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐)))
2726rspcev 3597 . . 3 ((2o ∈ On ∧ ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (2oo (𝑏o 𝑐)) = ((2oo 𝑏) ↑o 𝑐)) → ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐))
282, 19, 27sylancr 587 . 2 (¬ (2oo (2oo ∅)) = ((2oo 2o) ↑o ∅) → ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐))
291, 28ax-mp 5 1 𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎o (𝑏o 𝑐)) = ((𝑎o 𝑏) ↑o 𝑐)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  wrex 3055  c0 4304  Oncon0 6340  (class class class)co 7394  2oc2o 8437  o coe 8442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718  ax-reg 9563
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-oadd 8447  df-omul 8448  df-oexp 8449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator