| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg2lea | Structured version Visualization version GIF version | ||
| Description: Approximate version of itg2le 25660. If 𝐹 ≤ 𝐺 for almost all 𝑥, then ∫2𝐹 ≤ ∫2𝐺. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| Ref | Expression |
|---|---|
| itg2lea.1 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) |
| itg2lea.2 | ⊢ (𝜑 → 𝐺:ℝ⟶(0[,]+∞)) |
| itg2lea.3 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| itg2lea.4 | ⊢ (𝜑 → (vol*‘𝐴) = 0) |
| itg2lea.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
| Ref | Expression |
|---|---|
| itg2lea | ⊢ (𝜑 → (∫2‘𝐹) ≤ (∫2‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2lea.2 | . . . . . 6 ⊢ (𝜑 → 𝐺:ℝ⟶(0[,]+∞)) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐺:ℝ⟶(0[,]+∞)) |
| 3 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓 ∈ dom ∫1) | |
| 4 | itg2lea.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐴 ⊆ ℝ) |
| 6 | itg2lea.4 | . . . . . 6 ⊢ (𝜑 → (vol*‘𝐴) = 0) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → (vol*‘𝐴) = 0) |
| 8 | i1ff 25597 | . . . . . . . . 9 ⊢ (𝑓 ∈ dom ∫1 → 𝑓:ℝ⟶ℝ) | |
| 9 | 8 | ad2antrl 728 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓:ℝ⟶ℝ) |
| 10 | eldifi 4079 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑥 ∈ ℝ) | |
| 11 | ffvelcdm 7009 | . . . . . . . 8 ⊢ ((𝑓:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑓‘𝑥) ∈ ℝ) | |
| 12 | 9, 10, 11 | syl2an 596 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ∈ ℝ) |
| 13 | 12 | rexrd 11154 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ∈ ℝ*) |
| 14 | iccssxr 13322 | . . . . . . 7 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 15 | itg2lea.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) | |
| 16 | 15 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐹:ℝ⟶(0[,]+∞)) |
| 17 | ffvelcdm 7009 | . . . . . . . 8 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,]+∞)) | |
| 18 | 16, 10, 17 | syl2an 596 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ∈ (0[,]+∞)) |
| 19 | 14, 18 | sselid 3930 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ∈ ℝ*) |
| 20 | ffvelcdm 7009 | . . . . . . . 8 ⊢ ((𝐺:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) ∈ (0[,]+∞)) | |
| 21 | 2, 10, 20 | syl2an 596 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺‘𝑥) ∈ (0[,]+∞)) |
| 22 | 14, 21 | sselid 3930 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺‘𝑥) ∈ ℝ*) |
| 23 | simprr 772 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓 ∘r ≤ 𝐹) | |
| 24 | 9 | ffnd 6648 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓 Fn ℝ) |
| 25 | 16 | ffnd 6648 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐹 Fn ℝ) |
| 26 | reex 11089 | . . . . . . . . . . 11 ⊢ ℝ ∈ V | |
| 27 | 26 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → ℝ ∈ V) |
| 28 | inidm 4175 | . . . . . . . . . 10 ⊢ (ℝ ∩ ℝ) = ℝ | |
| 29 | eqidd 2731 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ ℝ) → (𝑓‘𝑥) = (𝑓‘𝑥)) | |
| 30 | eqidd 2731 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 31 | 24, 25, 27, 27, 28, 29, 30 | ofrfval 7615 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → (𝑓 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓‘𝑥) ≤ (𝐹‘𝑥))) |
| 32 | 23, 31 | mpbid 232 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → ∀𝑥 ∈ ℝ (𝑓‘𝑥) ≤ (𝐹‘𝑥)) |
| 33 | 32 | r19.21bi 3222 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ ℝ) → (𝑓‘𝑥) ≤ (𝐹‘𝑥)) |
| 34 | 10, 33 | sylan2 593 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ≤ (𝐹‘𝑥)) |
| 35 | itg2lea.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) | |
| 36 | 35 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
| 37 | 13, 19, 22, 34, 36 | xrletrd 13053 | . . . . 5 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ≤ (𝐺‘𝑥)) |
| 38 | 2, 3, 5, 7, 37 | itg2uba 25664 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → (∫1‘𝑓) ≤ (∫2‘𝐺)) |
| 39 | 38 | expr 456 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺))) |
| 40 | 39 | ralrimiva 3122 | . 2 ⊢ (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺))) |
| 41 | itg2cl 25653 | . . . 4 ⊢ (𝐺:ℝ⟶(0[,]+∞) → (∫2‘𝐺) ∈ ℝ*) | |
| 42 | 1, 41 | syl 17 | . . 3 ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ*) |
| 43 | itg2leub 25655 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (∫2‘𝐺) ∈ ℝ*) → ((∫2‘𝐹) ≤ (∫2‘𝐺) ↔ ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺)))) | |
| 44 | 15, 42, 43 | syl2anc 584 | . 2 ⊢ (𝜑 → ((∫2‘𝐹) ≤ (∫2‘𝐺) ↔ ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺)))) |
| 45 | 40, 44 | mpbird 257 | 1 ⊢ (𝜑 → (∫2‘𝐹) ≤ (∫2‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∀wral 3045 Vcvv 3434 ∖ cdif 3897 ⊆ wss 3900 class class class wbr 5089 dom cdm 5614 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 ∘r cofr 7604 ℝcr 10997 0cc0 10998 +∞cpnf 11135 ℝ*cxr 11137 ≤ cle 11139 [,]cicc 13240 vol*covol 25383 ∫1citg1 25536 ∫2citg2 25537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-q 12839 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-ioo 13241 df-ico 13243 df-icc 13244 df-fz 13400 df-fzo 13547 df-fl 13688 df-seq 13901 df-exp 13961 df-hash 14230 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-clim 15387 df-sum 15586 df-rest 17318 df-topgen 17339 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-top 22802 df-topon 22819 df-bases 22854 df-cmp 23295 df-ovol 25385 df-vol 25386 df-mbf 25540 df-itg1 25541 df-itg2 25542 |
| This theorem is referenced by: itg2eqa 25666 |
| Copyright terms: Public domain | W3C validator |