MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2lea Structured version   Visualization version   GIF version

Theorem itg2lea 24814
Description: Approximate version of itg2le 24809. If 𝐹𝐺 for almost all 𝑥, then 2𝐹 ≤ ∫2𝐺. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2lea.1 (𝜑𝐹:ℝ⟶(0[,]+∞))
itg2lea.2 (𝜑𝐺:ℝ⟶(0[,]+∞))
itg2lea.3 (𝜑𝐴 ⊆ ℝ)
itg2lea.4 (𝜑 → (vol*‘𝐴) = 0)
itg2lea.5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) ≤ (𝐺𝑥))
Assertion
Ref Expression
itg2lea (𝜑 → (∫2𝐹) ≤ (∫2𝐺))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥

Proof of Theorem itg2lea
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 itg2lea.2 . . . . . 6 (𝜑𝐺:ℝ⟶(0[,]+∞))
21adantr 480 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → 𝐺:ℝ⟶(0[,]+∞))
3 simprl 767 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → 𝑓 ∈ dom ∫1)
4 itg2lea.3 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
54adantr 480 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → 𝐴 ⊆ ℝ)
6 itg2lea.4 . . . . . 6 (𝜑 → (vol*‘𝐴) = 0)
76adantr 480 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (vol*‘𝐴) = 0)
8 i1ff 24745 . . . . . . . . 9 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
98ad2antrl 724 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → 𝑓:ℝ⟶ℝ)
10 eldifi 4057 . . . . . . . 8 (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑥 ∈ ℝ)
11 ffvelrn 6941 . . . . . . . 8 ((𝑓:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ∈ ℝ)
129, 10, 11syl2an 595 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓𝑥) ∈ ℝ)
1312rexrd 10956 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓𝑥) ∈ ℝ*)
14 iccssxr 13091 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
15 itg2lea.1 . . . . . . . . 9 (𝜑𝐹:ℝ⟶(0[,]+∞))
1615adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → 𝐹:ℝ⟶(0[,]+∞))
17 ffvelrn 6941 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,]+∞))
1816, 10, 17syl2an 595 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) ∈ (0[,]+∞))
1914, 18sselid 3915 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) ∈ ℝ*)
20 ffvelrn 6941 . . . . . . . 8 ((𝐺:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐺𝑥) ∈ (0[,]+∞))
212, 10, 20syl2an 595 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑥) ∈ (0[,]+∞))
2214, 21sselid 3915 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑥) ∈ ℝ*)
23 simprr 769 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → 𝑓r𝐹)
249ffnd 6585 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → 𝑓 Fn ℝ)
2516ffnd 6585 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → 𝐹 Fn ℝ)
26 reex 10893 . . . . . . . . . . 11 ℝ ∈ V
2726a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → ℝ ∈ V)
28 inidm 4149 . . . . . . . . . 10 (ℝ ∩ ℝ) = ℝ
29 eqidd 2739 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) = (𝑓𝑥))
30 eqidd 2739 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) = (𝐹𝑥))
3124, 25, 27, 27, 28, 29, 30ofrfval 7521 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (𝑓r𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ (𝐹𝑥)))
3223, 31mpbid 231 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ (𝐹𝑥))
3332r19.21bi 3132 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ≤ (𝐹𝑥))
3410, 33sylan2 592 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓𝑥) ≤ (𝐹𝑥))
35 itg2lea.5 . . . . . . 7 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) ≤ (𝐺𝑥))
3635adantlr 711 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) ≤ (𝐺𝑥))
3713, 19, 22, 34, 36xrletrd 12825 . . . . 5 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓𝑥) ≤ (𝐺𝑥))
382, 3, 5, 7, 37itg2uba 24813 . . . 4 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (∫1𝑓) ≤ (∫2𝐺))
3938expr 456 . . 3 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r𝐹 → (∫1𝑓) ≤ (∫2𝐺)))
4039ralrimiva 3107 . 2 (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ (∫2𝐺)))
41 itg2cl 24802 . . . 4 (𝐺:ℝ⟶(0[,]+∞) → (∫2𝐺) ∈ ℝ*)
421, 41syl 17 . . 3 (𝜑 → (∫2𝐺) ∈ ℝ*)
43 itg2leub 24804 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ (∫2𝐺) ∈ ℝ*) → ((∫2𝐹) ≤ (∫2𝐺) ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ (∫2𝐺))))
4415, 42, 43syl2anc 583 . 2 (𝜑 → ((∫2𝐹) ≤ (∫2𝐺) ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ (∫2𝐺))))
4540, 44mpbird 256 1 (𝜑 → (∫2𝐹) ≤ (∫2𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cdif 3880  wss 3883   class class class wbr 5070  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  r cofr 7510  cr 10801  0cc0 10802  +∞cpnf 10937  *cxr 10939  cle 10941  [,]cicc 13011  vol*covol 24531  1citg1 24684  2citg2 24685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690
This theorem is referenced by:  itg2eqa  24815
  Copyright terms: Public domain W3C validator