MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2lea Structured version   Visualization version   GIF version

Theorem itg2lea 25794
Description: Approximate version of itg2le 25789. If 𝐹𝐺 for almost all 𝑥, then 2𝐹 ≤ ∫2𝐺. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2lea.1 (𝜑𝐹:ℝ⟶(0[,]+∞))
itg2lea.2 (𝜑𝐺:ℝ⟶(0[,]+∞))
itg2lea.3 (𝜑𝐴 ⊆ ℝ)
itg2lea.4 (𝜑 → (vol*‘𝐴) = 0)
itg2lea.5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) ≤ (𝐺𝑥))
Assertion
Ref Expression
itg2lea (𝜑 → (∫2𝐹) ≤ (∫2𝐺))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥

Proof of Theorem itg2lea
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 itg2lea.2 . . . . . 6 (𝜑𝐺:ℝ⟶(0[,]+∞))
21adantr 480 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → 𝐺:ℝ⟶(0[,]+∞))
3 simprl 771 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → 𝑓 ∈ dom ∫1)
4 itg2lea.3 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
54adantr 480 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → 𝐴 ⊆ ℝ)
6 itg2lea.4 . . . . . 6 (𝜑 → (vol*‘𝐴) = 0)
76adantr 480 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (vol*‘𝐴) = 0)
8 i1ff 25725 . . . . . . . . 9 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
98ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → 𝑓:ℝ⟶ℝ)
10 eldifi 4141 . . . . . . . 8 (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑥 ∈ ℝ)
11 ffvelcdm 7101 . . . . . . . 8 ((𝑓:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ∈ ℝ)
129, 10, 11syl2an 596 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓𝑥) ∈ ℝ)
1312rexrd 11309 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓𝑥) ∈ ℝ*)
14 iccssxr 13467 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
15 itg2lea.1 . . . . . . . . 9 (𝜑𝐹:ℝ⟶(0[,]+∞))
1615adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → 𝐹:ℝ⟶(0[,]+∞))
17 ffvelcdm 7101 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,]+∞))
1816, 10, 17syl2an 596 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) ∈ (0[,]+∞))
1914, 18sselid 3993 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) ∈ ℝ*)
20 ffvelcdm 7101 . . . . . . . 8 ((𝐺:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐺𝑥) ∈ (0[,]+∞))
212, 10, 20syl2an 596 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑥) ∈ (0[,]+∞))
2214, 21sselid 3993 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑥) ∈ ℝ*)
23 simprr 773 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → 𝑓r𝐹)
249ffnd 6738 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → 𝑓 Fn ℝ)
2516ffnd 6738 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → 𝐹 Fn ℝ)
26 reex 11244 . . . . . . . . . . 11 ℝ ∈ V
2726a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → ℝ ∈ V)
28 inidm 4235 . . . . . . . . . 10 (ℝ ∩ ℝ) = ℝ
29 eqidd 2736 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) = (𝑓𝑥))
30 eqidd 2736 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) = (𝐹𝑥))
3124, 25, 27, 27, 28, 29, 30ofrfval 7707 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (𝑓r𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ (𝐹𝑥)))
3223, 31mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ (𝐹𝑥))
3332r19.21bi 3249 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ≤ (𝐹𝑥))
3410, 33sylan2 593 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓𝑥) ≤ (𝐹𝑥))
35 itg2lea.5 . . . . . . 7 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) ≤ (𝐺𝑥))
3635adantlr 715 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) ≤ (𝐺𝑥))
3713, 19, 22, 34, 36xrletrd 13201 . . . . 5 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓𝑥) ≤ (𝐺𝑥))
382, 3, 5, 7, 37itg2uba 25793 . . . 4 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (∫1𝑓) ≤ (∫2𝐺))
3938expr 456 . . 3 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r𝐹 → (∫1𝑓) ≤ (∫2𝐺)))
4039ralrimiva 3144 . 2 (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ (∫2𝐺)))
41 itg2cl 25782 . . . 4 (𝐺:ℝ⟶(0[,]+∞) → (∫2𝐺) ∈ ℝ*)
421, 41syl 17 . . 3 (𝜑 → (∫2𝐺) ∈ ℝ*)
43 itg2leub 25784 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ (∫2𝐺) ∈ ℝ*) → ((∫2𝐹) ≤ (∫2𝐺) ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ (∫2𝐺))))
4415, 42, 43syl2anc 584 . 2 (𝜑 → ((∫2𝐹) ≤ (∫2𝐺) ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ (∫2𝐺))))
4540, 44mpbird 257 1 (𝜑 → (∫2𝐹) ≤ (∫2𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  cdif 3960  wss 3963   class class class wbr 5148  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  r cofr 7696  cr 11152  0cc0 11153  +∞cpnf 11290  *cxr 11292  cle 11294  [,]cicc 13387  vol*covol 25511  1citg1 25664  2citg2 25665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-rest 17469  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969  df-cmp 23411  df-ovol 25513  df-vol 25514  df-mbf 25668  df-itg1 25669  df-itg2 25670
This theorem is referenced by:  itg2eqa  25795
  Copyright terms: Public domain W3C validator