| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg2lea | Structured version Visualization version GIF version | ||
| Description: Approximate version of itg2le 25697. If 𝐹 ≤ 𝐺 for almost all 𝑥, then ∫2𝐹 ≤ ∫2𝐺. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| Ref | Expression |
|---|---|
| itg2lea.1 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) |
| itg2lea.2 | ⊢ (𝜑 → 𝐺:ℝ⟶(0[,]+∞)) |
| itg2lea.3 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| itg2lea.4 | ⊢ (𝜑 → (vol*‘𝐴) = 0) |
| itg2lea.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
| Ref | Expression |
|---|---|
| itg2lea | ⊢ (𝜑 → (∫2‘𝐹) ≤ (∫2‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2lea.2 | . . . . . 6 ⊢ (𝜑 → 𝐺:ℝ⟶(0[,]+∞)) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐺:ℝ⟶(0[,]+∞)) |
| 3 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓 ∈ dom ∫1) | |
| 4 | itg2lea.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐴 ⊆ ℝ) |
| 6 | itg2lea.4 | . . . . . 6 ⊢ (𝜑 → (vol*‘𝐴) = 0) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → (vol*‘𝐴) = 0) |
| 8 | i1ff 25634 | . . . . . . . . 9 ⊢ (𝑓 ∈ dom ∫1 → 𝑓:ℝ⟶ℝ) | |
| 9 | 8 | ad2antrl 728 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓:ℝ⟶ℝ) |
| 10 | eldifi 4111 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑥 ∈ ℝ) | |
| 11 | ffvelcdm 7076 | . . . . . . . 8 ⊢ ((𝑓:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑓‘𝑥) ∈ ℝ) | |
| 12 | 9, 10, 11 | syl2an 596 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ∈ ℝ) |
| 13 | 12 | rexrd 11290 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ∈ ℝ*) |
| 14 | iccssxr 13452 | . . . . . . 7 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 15 | itg2lea.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) | |
| 16 | 15 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐹:ℝ⟶(0[,]+∞)) |
| 17 | ffvelcdm 7076 | . . . . . . . 8 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,]+∞)) | |
| 18 | 16, 10, 17 | syl2an 596 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ∈ (0[,]+∞)) |
| 19 | 14, 18 | sselid 3961 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ∈ ℝ*) |
| 20 | ffvelcdm 7076 | . . . . . . . 8 ⊢ ((𝐺:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) ∈ (0[,]+∞)) | |
| 21 | 2, 10, 20 | syl2an 596 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺‘𝑥) ∈ (0[,]+∞)) |
| 22 | 14, 21 | sselid 3961 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺‘𝑥) ∈ ℝ*) |
| 23 | simprr 772 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓 ∘r ≤ 𝐹) | |
| 24 | 9 | ffnd 6712 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓 Fn ℝ) |
| 25 | 16 | ffnd 6712 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐹 Fn ℝ) |
| 26 | reex 11225 | . . . . . . . . . . 11 ⊢ ℝ ∈ V | |
| 27 | 26 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → ℝ ∈ V) |
| 28 | inidm 4207 | . . . . . . . . . 10 ⊢ (ℝ ∩ ℝ) = ℝ | |
| 29 | eqidd 2737 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ ℝ) → (𝑓‘𝑥) = (𝑓‘𝑥)) | |
| 30 | eqidd 2737 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 31 | 24, 25, 27, 27, 28, 29, 30 | ofrfval 7686 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → (𝑓 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓‘𝑥) ≤ (𝐹‘𝑥))) |
| 32 | 23, 31 | mpbid 232 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → ∀𝑥 ∈ ℝ (𝑓‘𝑥) ≤ (𝐹‘𝑥)) |
| 33 | 32 | r19.21bi 3238 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ ℝ) → (𝑓‘𝑥) ≤ (𝐹‘𝑥)) |
| 34 | 10, 33 | sylan2 593 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ≤ (𝐹‘𝑥)) |
| 35 | itg2lea.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) | |
| 36 | 35 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
| 37 | 13, 19, 22, 34, 36 | xrletrd 13183 | . . . . 5 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ≤ (𝐺‘𝑥)) |
| 38 | 2, 3, 5, 7, 37 | itg2uba 25701 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → (∫1‘𝑓) ≤ (∫2‘𝐺)) |
| 39 | 38 | expr 456 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺))) |
| 40 | 39 | ralrimiva 3133 | . 2 ⊢ (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺))) |
| 41 | itg2cl 25690 | . . . 4 ⊢ (𝐺:ℝ⟶(0[,]+∞) → (∫2‘𝐺) ∈ ℝ*) | |
| 42 | 1, 41 | syl 17 | . . 3 ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ*) |
| 43 | itg2leub 25692 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (∫2‘𝐺) ∈ ℝ*) → ((∫2‘𝐹) ≤ (∫2‘𝐺) ↔ ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺)))) | |
| 44 | 15, 42, 43 | syl2anc 584 | . 2 ⊢ (𝜑 → ((∫2‘𝐹) ≤ (∫2‘𝐺) ↔ ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺)))) |
| 45 | 40, 44 | mpbird 257 | 1 ⊢ (𝜑 → (∫2‘𝐹) ≤ (∫2‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ∖ cdif 3928 ⊆ wss 3931 class class class wbr 5124 dom cdm 5659 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∘r cofr 7675 ℝcr 11133 0cc0 11134 +∞cpnf 11271 ℝ*cxr 11273 ≤ cle 11275 [,]cicc 13370 vol*covol 25420 ∫1citg1 25573 ∫2citg2 25574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-disj 5092 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-ofr 7677 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-sum 15708 df-rest 17441 df-topgen 17462 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-top 22837 df-topon 22854 df-bases 22889 df-cmp 23330 df-ovol 25422 df-vol 25423 df-mbf 25577 df-itg1 25578 df-itg2 25579 |
| This theorem is referenced by: itg2eqa 25703 |
| Copyright terms: Public domain | W3C validator |