![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg2lea | Structured version Visualization version GIF version |
Description: Approximate version of itg2le 25794. If 𝐹 ≤ 𝐺 for almost all 𝑥, then ∫2𝐹 ≤ ∫2𝐺. (Contributed by Mario Carneiro, 11-Aug-2014.) |
Ref | Expression |
---|---|
itg2lea.1 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) |
itg2lea.2 | ⊢ (𝜑 → 𝐺:ℝ⟶(0[,]+∞)) |
itg2lea.3 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
itg2lea.4 | ⊢ (𝜑 → (vol*‘𝐴) = 0) |
itg2lea.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
Ref | Expression |
---|---|
itg2lea | ⊢ (𝜑 → (∫2‘𝐹) ≤ (∫2‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg2lea.2 | . . . . . 6 ⊢ (𝜑 → 𝐺:ℝ⟶(0[,]+∞)) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐺:ℝ⟶(0[,]+∞)) |
3 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓 ∈ dom ∫1) | |
4 | itg2lea.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐴 ⊆ ℝ) |
6 | itg2lea.4 | . . . . . 6 ⊢ (𝜑 → (vol*‘𝐴) = 0) | |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → (vol*‘𝐴) = 0) |
8 | i1ff 25730 | . . . . . . . . 9 ⊢ (𝑓 ∈ dom ∫1 → 𝑓:ℝ⟶ℝ) | |
9 | 8 | ad2antrl 727 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓:ℝ⟶ℝ) |
10 | eldifi 4154 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑥 ∈ ℝ) | |
11 | ffvelcdm 7115 | . . . . . . . 8 ⊢ ((𝑓:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑓‘𝑥) ∈ ℝ) | |
12 | 9, 10, 11 | syl2an 595 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ∈ ℝ) |
13 | 12 | rexrd 11340 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ∈ ℝ*) |
14 | iccssxr 13490 | . . . . . . 7 ⊢ (0[,]+∞) ⊆ ℝ* | |
15 | itg2lea.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) | |
16 | 15 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐹:ℝ⟶(0[,]+∞)) |
17 | ffvelcdm 7115 | . . . . . . . 8 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,]+∞)) | |
18 | 16, 10, 17 | syl2an 595 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ∈ (0[,]+∞)) |
19 | 14, 18 | sselid 4006 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ∈ ℝ*) |
20 | ffvelcdm 7115 | . . . . . . . 8 ⊢ ((𝐺:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) ∈ (0[,]+∞)) | |
21 | 2, 10, 20 | syl2an 595 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺‘𝑥) ∈ (0[,]+∞)) |
22 | 14, 21 | sselid 4006 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺‘𝑥) ∈ ℝ*) |
23 | simprr 772 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓 ∘r ≤ 𝐹) | |
24 | 9 | ffnd 6748 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓 Fn ℝ) |
25 | 16 | ffnd 6748 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐹 Fn ℝ) |
26 | reex 11275 | . . . . . . . . . . 11 ⊢ ℝ ∈ V | |
27 | 26 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → ℝ ∈ V) |
28 | inidm 4248 | . . . . . . . . . 10 ⊢ (ℝ ∩ ℝ) = ℝ | |
29 | eqidd 2741 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ ℝ) → (𝑓‘𝑥) = (𝑓‘𝑥)) | |
30 | eqidd 2741 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
31 | 24, 25, 27, 27, 28, 29, 30 | ofrfval 7724 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → (𝑓 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓‘𝑥) ≤ (𝐹‘𝑥))) |
32 | 23, 31 | mpbid 232 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → ∀𝑥 ∈ ℝ (𝑓‘𝑥) ≤ (𝐹‘𝑥)) |
33 | 32 | r19.21bi 3257 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ ℝ) → (𝑓‘𝑥) ≤ (𝐹‘𝑥)) |
34 | 10, 33 | sylan2 592 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ≤ (𝐹‘𝑥)) |
35 | itg2lea.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) | |
36 | 35 | adantlr 714 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
37 | 13, 19, 22, 34, 36 | xrletrd 13224 | . . . . 5 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ≤ (𝐺‘𝑥)) |
38 | 2, 3, 5, 7, 37 | itg2uba 25798 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → (∫1‘𝑓) ≤ (∫2‘𝐺)) |
39 | 38 | expr 456 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺))) |
40 | 39 | ralrimiva 3152 | . 2 ⊢ (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺))) |
41 | itg2cl 25787 | . . . 4 ⊢ (𝐺:ℝ⟶(0[,]+∞) → (∫2‘𝐺) ∈ ℝ*) | |
42 | 1, 41 | syl 17 | . . 3 ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ*) |
43 | itg2leub 25789 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (∫2‘𝐺) ∈ ℝ*) → ((∫2‘𝐹) ≤ (∫2‘𝐺) ↔ ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺)))) | |
44 | 15, 42, 43 | syl2anc 583 | . 2 ⊢ (𝜑 → ((∫2‘𝐹) ≤ (∫2‘𝐺) ↔ ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺)))) |
45 | 40, 44 | mpbird 257 | 1 ⊢ (𝜑 → (∫2‘𝐹) ≤ (∫2‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 class class class wbr 5166 dom cdm 5700 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∘r cofr 7713 ℝcr 11183 0cc0 11184 +∞cpnf 11321 ℝ*cxr 11323 ≤ cle 11325 [,]cicc 13410 vol*covol 25516 ∫1citg1 25669 ∫2citg2 25670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-rest 17482 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-top 22921 df-topon 22938 df-bases 22974 df-cmp 23416 df-ovol 25518 df-vol 25519 df-mbf 25673 df-itg1 25674 df-itg2 25675 |
This theorem is referenced by: itg2eqa 25800 |
Copyright terms: Public domain | W3C validator |