Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itg2lea | Structured version Visualization version GIF version |
Description: Approximate version of itg2le 24809. If 𝐹 ≤ 𝐺 for almost all 𝑥, then ∫2𝐹 ≤ ∫2𝐺. (Contributed by Mario Carneiro, 11-Aug-2014.) |
Ref | Expression |
---|---|
itg2lea.1 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) |
itg2lea.2 | ⊢ (𝜑 → 𝐺:ℝ⟶(0[,]+∞)) |
itg2lea.3 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
itg2lea.4 | ⊢ (𝜑 → (vol*‘𝐴) = 0) |
itg2lea.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
Ref | Expression |
---|---|
itg2lea | ⊢ (𝜑 → (∫2‘𝐹) ≤ (∫2‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg2lea.2 | . . . . . 6 ⊢ (𝜑 → 𝐺:ℝ⟶(0[,]+∞)) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐺:ℝ⟶(0[,]+∞)) |
3 | simprl 767 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓 ∈ dom ∫1) | |
4 | itg2lea.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐴 ⊆ ℝ) |
6 | itg2lea.4 | . . . . . 6 ⊢ (𝜑 → (vol*‘𝐴) = 0) | |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → (vol*‘𝐴) = 0) |
8 | i1ff 24745 | . . . . . . . . 9 ⊢ (𝑓 ∈ dom ∫1 → 𝑓:ℝ⟶ℝ) | |
9 | 8 | ad2antrl 724 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓:ℝ⟶ℝ) |
10 | eldifi 4057 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑥 ∈ ℝ) | |
11 | ffvelrn 6941 | . . . . . . . 8 ⊢ ((𝑓:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑓‘𝑥) ∈ ℝ) | |
12 | 9, 10, 11 | syl2an 595 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ∈ ℝ) |
13 | 12 | rexrd 10956 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ∈ ℝ*) |
14 | iccssxr 13091 | . . . . . . 7 ⊢ (0[,]+∞) ⊆ ℝ* | |
15 | itg2lea.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) | |
16 | 15 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐹:ℝ⟶(0[,]+∞)) |
17 | ffvelrn 6941 | . . . . . . . 8 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,]+∞)) | |
18 | 16, 10, 17 | syl2an 595 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ∈ (0[,]+∞)) |
19 | 14, 18 | sselid 3915 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ∈ ℝ*) |
20 | ffvelrn 6941 | . . . . . . . 8 ⊢ ((𝐺:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) ∈ (0[,]+∞)) | |
21 | 2, 10, 20 | syl2an 595 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺‘𝑥) ∈ (0[,]+∞)) |
22 | 14, 21 | sselid 3915 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺‘𝑥) ∈ ℝ*) |
23 | simprr 769 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓 ∘r ≤ 𝐹) | |
24 | 9 | ffnd 6585 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓 Fn ℝ) |
25 | 16 | ffnd 6585 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐹 Fn ℝ) |
26 | reex 10893 | . . . . . . . . . . 11 ⊢ ℝ ∈ V | |
27 | 26 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → ℝ ∈ V) |
28 | inidm 4149 | . . . . . . . . . 10 ⊢ (ℝ ∩ ℝ) = ℝ | |
29 | eqidd 2739 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ ℝ) → (𝑓‘𝑥) = (𝑓‘𝑥)) | |
30 | eqidd 2739 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
31 | 24, 25, 27, 27, 28, 29, 30 | ofrfval 7521 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → (𝑓 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓‘𝑥) ≤ (𝐹‘𝑥))) |
32 | 23, 31 | mpbid 231 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → ∀𝑥 ∈ ℝ (𝑓‘𝑥) ≤ (𝐹‘𝑥)) |
33 | 32 | r19.21bi 3132 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ ℝ) → (𝑓‘𝑥) ≤ (𝐹‘𝑥)) |
34 | 10, 33 | sylan2 592 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ≤ (𝐹‘𝑥)) |
35 | itg2lea.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) | |
36 | 35 | adantlr 711 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
37 | 13, 19, 22, 34, 36 | xrletrd 12825 | . . . . 5 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ≤ (𝐺‘𝑥)) |
38 | 2, 3, 5, 7, 37 | itg2uba 24813 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → (∫1‘𝑓) ≤ (∫2‘𝐺)) |
39 | 38 | expr 456 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺))) |
40 | 39 | ralrimiva 3107 | . 2 ⊢ (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺))) |
41 | itg2cl 24802 | . . . 4 ⊢ (𝐺:ℝ⟶(0[,]+∞) → (∫2‘𝐺) ∈ ℝ*) | |
42 | 1, 41 | syl 17 | . . 3 ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ*) |
43 | itg2leub 24804 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (∫2‘𝐺) ∈ ℝ*) → ((∫2‘𝐹) ≤ (∫2‘𝐺) ↔ ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺)))) | |
44 | 15, 42, 43 | syl2anc 583 | . 2 ⊢ (𝜑 → ((∫2‘𝐹) ≤ (∫2‘𝐺) ↔ ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺)))) |
45 | 40, 44 | mpbird 256 | 1 ⊢ (𝜑 → (∫2‘𝐹) ≤ (∫2‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 class class class wbr 5070 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∘r cofr 7510 ℝcr 10801 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 ≤ cle 10941 [,]cicc 13011 vol*covol 24531 ∫1citg1 24684 ∫2citg2 24685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-rest 17050 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-top 21951 df-topon 21968 df-bases 22004 df-cmp 22446 df-ovol 24533 df-vol 24534 df-mbf 24688 df-itg1 24689 df-itg2 24690 |
This theorem is referenced by: itg2eqa 24815 |
Copyright terms: Public domain | W3C validator |