Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itg2lea | Structured version Visualization version GIF version |
Description: Approximate version of itg2le 24904. If 𝐹 ≤ 𝐺 for almost all 𝑥, then ∫2𝐹 ≤ ∫2𝐺. (Contributed by Mario Carneiro, 11-Aug-2014.) |
Ref | Expression |
---|---|
itg2lea.1 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) |
itg2lea.2 | ⊢ (𝜑 → 𝐺:ℝ⟶(0[,]+∞)) |
itg2lea.3 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
itg2lea.4 | ⊢ (𝜑 → (vol*‘𝐴) = 0) |
itg2lea.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
Ref | Expression |
---|---|
itg2lea | ⊢ (𝜑 → (∫2‘𝐹) ≤ (∫2‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg2lea.2 | . . . . . 6 ⊢ (𝜑 → 𝐺:ℝ⟶(0[,]+∞)) | |
2 | 1 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐺:ℝ⟶(0[,]+∞)) |
3 | simprl 768 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓 ∈ dom ∫1) | |
4 | itg2lea.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐴 ⊆ ℝ) |
6 | itg2lea.4 | . . . . . 6 ⊢ (𝜑 → (vol*‘𝐴) = 0) | |
7 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → (vol*‘𝐴) = 0) |
8 | i1ff 24840 | . . . . . . . . 9 ⊢ (𝑓 ∈ dom ∫1 → 𝑓:ℝ⟶ℝ) | |
9 | 8 | ad2antrl 725 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓:ℝ⟶ℝ) |
10 | eldifi 4061 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑥 ∈ ℝ) | |
11 | ffvelrn 6959 | . . . . . . . 8 ⊢ ((𝑓:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑓‘𝑥) ∈ ℝ) | |
12 | 9, 10, 11 | syl2an 596 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ∈ ℝ) |
13 | 12 | rexrd 11025 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ∈ ℝ*) |
14 | iccssxr 13162 | . . . . . . 7 ⊢ (0[,]+∞) ⊆ ℝ* | |
15 | itg2lea.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) | |
16 | 15 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐹:ℝ⟶(0[,]+∞)) |
17 | ffvelrn 6959 | . . . . . . . 8 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,]+∞)) | |
18 | 16, 10, 17 | syl2an 596 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ∈ (0[,]+∞)) |
19 | 14, 18 | sselid 3919 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ∈ ℝ*) |
20 | ffvelrn 6959 | . . . . . . . 8 ⊢ ((𝐺:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) ∈ (0[,]+∞)) | |
21 | 2, 10, 20 | syl2an 596 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺‘𝑥) ∈ (0[,]+∞)) |
22 | 14, 21 | sselid 3919 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺‘𝑥) ∈ ℝ*) |
23 | simprr 770 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓 ∘r ≤ 𝐹) | |
24 | 9 | ffnd 6601 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝑓 Fn ℝ) |
25 | 16 | ffnd 6601 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → 𝐹 Fn ℝ) |
26 | reex 10962 | . . . . . . . . . . 11 ⊢ ℝ ∈ V | |
27 | 26 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → ℝ ∈ V) |
28 | inidm 4152 | . . . . . . . . . 10 ⊢ (ℝ ∩ ℝ) = ℝ | |
29 | eqidd 2739 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ ℝ) → (𝑓‘𝑥) = (𝑓‘𝑥)) | |
30 | eqidd 2739 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
31 | 24, 25, 27, 27, 28, 29, 30 | ofrfval 7543 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → (𝑓 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓‘𝑥) ≤ (𝐹‘𝑥))) |
32 | 23, 31 | mpbid 231 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → ∀𝑥 ∈ ℝ (𝑓‘𝑥) ≤ (𝐹‘𝑥)) |
33 | 32 | r19.21bi 3134 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ ℝ) → (𝑓‘𝑥) ≤ (𝐹‘𝑥)) |
34 | 10, 33 | sylan2 593 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ≤ (𝐹‘𝑥)) |
35 | itg2lea.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) | |
36 | 35 | adantlr 712 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
37 | 13, 19, 22, 34, 36 | xrletrd 12896 | . . . . 5 ⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝑓‘𝑥) ≤ (𝐺‘𝑥)) |
38 | 2, 3, 5, 7, 37 | itg2uba 24908 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹)) → (∫1‘𝑓) ≤ (∫2‘𝐺)) |
39 | 38 | expr 457 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺))) |
40 | 39 | ralrimiva 3103 | . 2 ⊢ (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺))) |
41 | itg2cl 24897 | . . . 4 ⊢ (𝐺:ℝ⟶(0[,]+∞) → (∫2‘𝐺) ∈ ℝ*) | |
42 | 1, 41 | syl 17 | . . 3 ⊢ (𝜑 → (∫2‘𝐺) ∈ ℝ*) |
43 | itg2leub 24899 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (∫2‘𝐺) ∈ ℝ*) → ((∫2‘𝐹) ≤ (∫2‘𝐺) ↔ ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺)))) | |
44 | 15, 42, 43 | syl2anc 584 | . 2 ⊢ (𝜑 → ((∫2‘𝐹) ≤ (∫2‘𝐺) ↔ ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤ (∫2‘𝐺)))) |
45 | 40, 44 | mpbird 256 | 1 ⊢ (𝜑 → (∫2‘𝐹) ≤ (∫2‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∖ cdif 3884 ⊆ wss 3887 class class class wbr 5074 dom cdm 5589 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∘r cofr 7532 ℝcr 10870 0cc0 10871 +∞cpnf 11006 ℝ*cxr 11008 ≤ cle 11010 [,]cicc 13082 vol*covol 24626 ∫1citg1 24779 ∫2citg2 24780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-rest 17133 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-top 22043 df-topon 22060 df-bases 22096 df-cmp 22538 df-ovol 24628 df-vol 24629 df-mbf 24783 df-itg1 24784 df-itg2 24785 |
This theorem is referenced by: itg2eqa 24910 |
Copyright terms: Public domain | W3C validator |