Step | Hyp | Ref
| Expression |
1 | | simpr1 1192 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → 𝐹 ∈ 𝐷) |
2 | | psrbag.d |
. . . . . . . . . 10
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
3 | 2 | psrbag 21030 |
. . . . . . . . 9
⊢ (𝐼 ∈ 𝑉 → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈
Fin))) |
4 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈
Fin))) |
5 | 1, 4 | mpbid 231 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈
Fin)) |
6 | 5 | simpld 494 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → 𝐹:𝐼⟶ℕ0) |
7 | 6 | ffnd 6585 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → 𝐹 Fn 𝐼) |
8 | | simpr2 1193 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → 𝐺:𝐼⟶ℕ0) |
9 | 8 | ffnd 6585 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → 𝐺 Fn 𝐼) |
10 | | simpl 482 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → 𝐼 ∈ 𝑉) |
11 | | inidm 4149 |
. . . . 5
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
12 | 7, 9, 10, 10, 11 | offn 7524 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → (𝐹 ∘f − 𝐺) Fn 𝐼) |
13 | | eqidd 2739 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
14 | | eqidd 2739 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
15 | 7, 9, 10, 10, 11, 13, 14 | ofval 7522 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ 𝐼) → ((𝐹 ∘f − 𝐺)‘𝑥) = ((𝐹‘𝑥) − (𝐺‘𝑥))) |
16 | | simpr3 1194 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → 𝐺 ∘r ≤ 𝐹) |
17 | 9, 7, 10, 10, 11, 14, 13 | ofrfval 7521 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → (𝐺 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ 𝐼 (𝐺‘𝑥) ≤ (𝐹‘𝑥))) |
18 | 16, 17 | mpbid 231 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → ∀𝑥 ∈ 𝐼 (𝐺‘𝑥) ≤ (𝐹‘𝑥)) |
19 | 18 | r19.21bi 3132 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ≤ (𝐹‘𝑥)) |
20 | 8 | ffvelrnda 6943 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈
ℕ0) |
21 | 6 | ffvelrnda 6943 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈
ℕ0) |
22 | | nn0sub 12213 |
. . . . . . . 8
⊢ (((𝐺‘𝑥) ∈ ℕ0 ∧ (𝐹‘𝑥) ∈ ℕ0) → ((𝐺‘𝑥) ≤ (𝐹‘𝑥) ↔ ((𝐹‘𝑥) − (𝐺‘𝑥)) ∈
ℕ0)) |
23 | 20, 21, 22 | syl2anc 583 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ 𝐼) → ((𝐺‘𝑥) ≤ (𝐹‘𝑥) ↔ ((𝐹‘𝑥) − (𝐺‘𝑥)) ∈
ℕ0)) |
24 | 19, 23 | mpbid 231 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥) − (𝐺‘𝑥)) ∈
ℕ0) |
25 | 15, 24 | eqeltrd 2839 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ 𝐼) → ((𝐹 ∘f − 𝐺)‘𝑥) ∈
ℕ0) |
26 | 25 | ralrimiva 3107 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → ∀𝑥 ∈ 𝐼 ((𝐹 ∘f − 𝐺)‘𝑥) ∈
ℕ0) |
27 | | ffnfv 6974 |
. . . 4
⊢ ((𝐹 ∘f −
𝐺):𝐼⟶ℕ0 ↔ ((𝐹 ∘f −
𝐺) Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((𝐹 ∘f − 𝐺)‘𝑥) ∈
ℕ0)) |
28 | 12, 26, 27 | sylanbrc 582 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → (𝐹 ∘f − 𝐺):𝐼⟶ℕ0) |
29 | 5 | simprd 495 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → (◡𝐹 “ ℕ) ∈
Fin) |
30 | 20 | nn0ge0d 12226 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ 𝐼) → 0 ≤ (𝐺‘𝑥)) |
31 | | nn0re 12172 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ∈ ℕ0 → (𝐹‘𝑥) ∈ ℝ) |
32 | | nn0re 12172 |
. . . . . . . . . 10
⊢ ((𝐺‘𝑥) ∈ ℕ0 → (𝐺‘𝑥) ∈ ℝ) |
33 | | subge02 11421 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑥) ∈ ℝ ∧ (𝐺‘𝑥) ∈ ℝ) → (0 ≤ (𝐺‘𝑥) ↔ ((𝐹‘𝑥) − (𝐺‘𝑥)) ≤ (𝐹‘𝑥))) |
34 | 31, 32, 33 | syl2an 595 |
. . . . . . . . 9
⊢ (((𝐹‘𝑥) ∈ ℕ0 ∧ (𝐺‘𝑥) ∈ ℕ0) → (0 ≤
(𝐺‘𝑥) ↔ ((𝐹‘𝑥) − (𝐺‘𝑥)) ≤ (𝐹‘𝑥))) |
35 | 21, 20, 34 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ 𝐼) → (0 ≤ (𝐺‘𝑥) ↔ ((𝐹‘𝑥) − (𝐺‘𝑥)) ≤ (𝐹‘𝑥))) |
36 | 30, 35 | mpbid 231 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥) − (𝐺‘𝑥)) ≤ (𝐹‘𝑥)) |
37 | 36 | ralrimiva 3107 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥) − (𝐺‘𝑥)) ≤ (𝐹‘𝑥)) |
38 | 12, 7, 10, 10, 11, 15, 13 | ofrfval 7521 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → ((𝐹 ∘f − 𝐺) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥) − (𝐺‘𝑥)) ≤ (𝐹‘𝑥))) |
39 | 37, 38 | mpbird 256 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → (𝐹 ∘f − 𝐺) ∘r ≤ 𝐹) |
40 | 2 | psrbaglesuppOLD 21038 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ (𝐹 ∘f − 𝐺):𝐼⟶ℕ0 ∧ (𝐹 ∘f −
𝐺) ∘r ≤
𝐹)) → (◡(𝐹 ∘f − 𝐺) “ ℕ) ⊆
(◡𝐹 “ ℕ)) |
41 | 10, 1, 28, 39, 40 | syl13anc 1370 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → (◡(𝐹 ∘f − 𝐺) “ ℕ) ⊆
(◡𝐹 “ ℕ)) |
42 | 29, 41 | ssfid 8971 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → (◡(𝐹 ∘f − 𝐺) “ ℕ) ∈
Fin) |
43 | 2 | psrbag 21030 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → ((𝐹 ∘f − 𝐺) ∈ 𝐷 ↔ ((𝐹 ∘f − 𝐺):𝐼⟶ℕ0 ∧ (◡(𝐹 ∘f − 𝐺) “ ℕ) ∈
Fin))) |
44 | 43 | adantr 480 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → ((𝐹 ∘f − 𝐺) ∈ 𝐷 ↔ ((𝐹 ∘f − 𝐺):𝐼⟶ℕ0 ∧ (◡(𝐹 ∘f − 𝐺) “ ℕ) ∈
Fin))) |
45 | 28, 42, 44 | mpbir2and 709 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → (𝐹 ∘f − 𝐺) ∈ 𝐷) |
46 | 45, 39 | jca 511 |
1
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹)) → ((𝐹 ∘f − 𝐺) ∈ 𝐷 ∧ (𝐹 ∘f − 𝐺) ∘r ≤ 𝐹)) |