MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagconOLD Structured version   Visualization version   GIF version

Theorem psrbagconOLD 21333
Description: Obsolete version of psrbagcon 21332 as of 5-Aug-2024. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagconOLD ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → ((𝐹f𝐺) ∈ 𝐷 ∧ (𝐹f𝐺) ∘r𝐹))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbagconOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1194 . . . . . . . 8 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 𝐹𝐷)
2 psrbag.d . . . . . . . . . 10 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbag 21319 . . . . . . . . 9 (𝐼𝑉 → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
43adantr 481 . . . . . . . 8 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
51, 4mpbid 231 . . . . . . 7 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin))
65simpld 495 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 𝐹:𝐼⟶ℕ0)
76ffnd 6669 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 𝐹 Fn 𝐼)
8 simpr2 1195 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 𝐺:𝐼⟶ℕ0)
98ffnd 6669 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 𝐺 Fn 𝐼)
10 simpl 483 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 𝐼𝑉)
11 inidm 4178 . . . . 5 (𝐼𝐼) = 𝐼
127, 9, 10, 10, 11offn 7630 . . . 4 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐹f𝐺) Fn 𝐼)
13 eqidd 2737 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
14 eqidd 2737 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
157, 9, 10, 10, 11, 13, 14ofval 7628 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥𝐼) → ((𝐹f𝐺)‘𝑥) = ((𝐹𝑥) − (𝐺𝑥)))
16 simpr3 1196 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 𝐺r𝐹)
179, 7, 10, 10, 11, 14, 13ofrfval 7627 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐺r𝐹 ↔ ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥)))
1816, 17mpbid 231 . . . . . . . 8 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥))
1918r19.21bi 3234 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥𝐼) → (𝐺𝑥) ≤ (𝐹𝑥))
208ffvelcdmda 7035 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℕ0)
216ffvelcdmda 7035 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
22 nn0sub 12463 . . . . . . . 8 (((𝐺𝑥) ∈ ℕ0 ∧ (𝐹𝑥) ∈ ℕ0) → ((𝐺𝑥) ≤ (𝐹𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0))
2320, 21, 22syl2anc 584 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥𝐼) → ((𝐺𝑥) ≤ (𝐹𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0))
2419, 23mpbid 231 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥𝐼) → ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0)
2515, 24eqeltrd 2838 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥𝐼) → ((𝐹f𝐺)‘𝑥) ∈ ℕ0)
2625ralrimiva 3143 . . . 4 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → ∀𝑥𝐼 ((𝐹f𝐺)‘𝑥) ∈ ℕ0)
27 ffnfv 7066 . . . 4 ((𝐹f𝐺):𝐼⟶ℕ0 ↔ ((𝐹f𝐺) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝐹f𝐺)‘𝑥) ∈ ℕ0))
2812, 26, 27sylanbrc 583 . . 3 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐹f𝐺):𝐼⟶ℕ0)
295simprd 496 . . . 4 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐹 “ ℕ) ∈ Fin)
3020nn0ge0d 12476 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥𝐼) → 0 ≤ (𝐺𝑥))
31 nn0re 12422 . . . . . . . . . 10 ((𝐹𝑥) ∈ ℕ0 → (𝐹𝑥) ∈ ℝ)
32 nn0re 12422 . . . . . . . . . 10 ((𝐺𝑥) ∈ ℕ0 → (𝐺𝑥) ∈ ℝ)
33 subge02 11671 . . . . . . . . . 10 (((𝐹𝑥) ∈ ℝ ∧ (𝐺𝑥) ∈ ℝ) → (0 ≤ (𝐺𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
3431, 32, 33syl2an 596 . . . . . . . . 9 (((𝐹𝑥) ∈ ℕ0 ∧ (𝐺𝑥) ∈ ℕ0) → (0 ≤ (𝐺𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
3521, 20, 34syl2anc 584 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥𝐼) → (0 ≤ (𝐺𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
3630, 35mpbid 231 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥𝐼) → ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥))
3736ralrimiva 3143 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → ∀𝑥𝐼 ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥))
3812, 7, 10, 10, 11, 15, 13ofrfval 7627 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → ((𝐹f𝐺) ∘r𝐹 ↔ ∀𝑥𝐼 ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
3937, 38mpbird 256 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐹f𝐺) ∘r𝐹)
402psrbaglesuppOLD 21327 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷 ∧ (𝐹f𝐺):𝐼⟶ℕ0 ∧ (𝐹f𝐺) ∘r𝐹)) → ((𝐹f𝐺) “ ℕ) ⊆ (𝐹 “ ℕ))
4110, 1, 28, 39, 40syl13anc 1372 . . . 4 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → ((𝐹f𝐺) “ ℕ) ⊆ (𝐹 “ ℕ))
4229, 41ssfid 9211 . . 3 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → ((𝐹f𝐺) “ ℕ) ∈ Fin)
432psrbag 21319 . . . 4 (𝐼𝑉 → ((𝐹f𝐺) ∈ 𝐷 ↔ ((𝐹f𝐺):𝐼⟶ℕ0 ∧ ((𝐹f𝐺) “ ℕ) ∈ Fin)))
4443adantr 481 . . 3 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → ((𝐹f𝐺) ∈ 𝐷 ↔ ((𝐹f𝐺):𝐼⟶ℕ0 ∧ ((𝐹f𝐺) “ ℕ) ∈ Fin)))
4528, 42, 44mpbir2and 711 . 2 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐹f𝐺) ∈ 𝐷)
4645, 39jca 512 1 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → ((𝐹f𝐺) ∈ 𝐷 ∧ (𝐹f𝐺) ∘r𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  {crab 3407  wss 3910   class class class wbr 5105  ccnv 5632  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  r cofr 7616  m cmap 8765  Fincfn 8883  cr 11050  0cc0 11051  cle 11190  cmin 11385  cn 12153  0cn0 12413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414
This theorem is referenced by:  psrbagconclOLD  21337  psrbagconf1oOLD  21339  gsumbagdiaglemOLD  21340
  Copyright terms: Public domain W3C validator