Step | Hyp | Ref
| Expression |
1 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑛 = 𝑀 → (𝑃‘𝑛) = (𝑃‘𝑀)) |
2 | 1 | fveq1d 6776 |
. . . . . 6
⊢ (𝑛 = 𝑀 → ((𝑃‘𝑛)‘𝑦) = ((𝑃‘𝑀)‘𝑦)) |
3 | | eqid 2738 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) |
4 | | fvex 6787 |
. . . . . 6
⊢ ((𝑃‘𝑀)‘𝑦) ∈ V |
5 | 2, 3, 4 | fvmpt 6875 |
. . . . 5
⊢ (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑀) = ((𝑃‘𝑀)‘𝑦)) |
6 | 5 | ad2antlr 724 |
. . . 4
⊢ (((𝜑 ∧ 𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑀) = ((𝑃‘𝑀)‘𝑦)) |
7 | | nnuz 12621 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
8 | | simplr 766 |
. . . . 5
⊢ (((𝜑 ∧ 𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝑀 ∈ ℕ) |
9 | | itg2i1fseq.5 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) |
10 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝑃‘𝑛)‘𝑥) = ((𝑃‘𝑛)‘𝑦)) |
11 | 10 | mpteq2dv 5176 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))) |
12 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
13 | 11, 12 | breq12d 5087 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦))) |
14 | 13 | rspccva 3560 |
. . . . . . 7
⊢
((∀𝑥 ∈
ℝ (𝑛 ∈ ℕ
↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥) ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) |
15 | 9, 14 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) |
16 | 15 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) |
17 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (𝑃‘𝑛) = (𝑃‘𝑘)) |
18 | 17 | fveq1d 6776 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → ((𝑃‘𝑛)‘𝑦) = ((𝑃‘𝑘)‘𝑦)) |
19 | | fvex 6787 |
. . . . . . . . 9
⊢ ((𝑃‘𝑘)‘𝑦) ∈ V |
20 | 18, 3, 19 | fvmpt 6875 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑘) = ((𝑃‘𝑘)‘𝑦)) |
21 | 20 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑘) = ((𝑃‘𝑘)‘𝑦)) |
22 | | itg2i1fseq.3 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃:ℕ⟶dom
∫1) |
23 | 22 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) ∈ dom
∫1) |
24 | | i1ff 24840 |
. . . . . . . . . 10
⊢ ((𝑃‘𝑘) ∈ dom ∫1 → (𝑃‘𝑘):ℝ⟶ℝ) |
25 | 23, 24 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘):ℝ⟶ℝ) |
26 | 25 | ffvelrnda 6961 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘𝑘)‘𝑦) ∈ ℝ) |
27 | 26 | an32s 649 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑃‘𝑘)‘𝑦) ∈ ℝ) |
28 | 21, 27 | eqeltrd 2839 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑘) ∈ ℝ) |
29 | 28 | adantllr 716 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑘) ∈ ℝ) |
30 | | itg2i1fseq.4 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝
∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) |
31 | | simpr 485 |
. . . . . . . . . . . . 13
⊢
((0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) |
32 | 31 | ralimi 3087 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → ∀𝑛 ∈ ℕ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) |
33 | 30, 32 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) |
34 | | fvoveq1 7298 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑘 + 1))) |
35 | 17, 34 | breq12d 5087 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → ((𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1)))) |
36 | 35 | rspccva 3560 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
ℕ (𝑃‘𝑛) ∘r ≤
(𝑃‘(𝑛 + 1)) ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))) |
37 | 33, 36 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))) |
38 | | ffn 6600 |
. . . . . . . . . . . 12
⊢ ((𝑃‘𝑘):ℝ⟶ℝ → (𝑃‘𝑘) Fn ℝ) |
39 | 23, 24, 38 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) Fn ℝ) |
40 | | peano2nn 11985 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
41 | | ffvelrn 6959 |
. . . . . . . . . . . . 13
⊢ ((𝑃:ℕ⟶dom
∫1 ∧ (𝑘
+ 1) ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom
∫1) |
42 | 22, 40, 41 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom
∫1) |
43 | | i1ff 24840 |
. . . . . . . . . . . 12
⊢ ((𝑃‘(𝑘 + 1)) ∈ dom ∫1 →
(𝑃‘(𝑘 +
1)):ℝ⟶ℝ) |
44 | | ffn 6600 |
. . . . . . . . . . . 12
⊢ ((𝑃‘(𝑘 + 1)):ℝ⟶ℝ → (𝑃‘(𝑘 + 1)) Fn ℝ) |
45 | 42, 43, 44 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘(𝑘 + 1)) Fn ℝ) |
46 | | reex 10962 |
. . . . . . . . . . . 12
⊢ ℝ
∈ V |
47 | 46 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ℝ ∈
V) |
48 | | inidm 4152 |
. . . . . . . . . . 11
⊢ (ℝ
∩ ℝ) = ℝ |
49 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘𝑘)‘𝑦) = ((𝑃‘𝑘)‘𝑦)) |
50 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘(𝑘 + 1))‘𝑦) = ((𝑃‘(𝑘 + 1))‘𝑦)) |
51 | 39, 45, 47, 47, 48, 49, 50 | ofrfval 7543 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1)) ↔ ∀𝑦 ∈ ℝ ((𝑃‘𝑘)‘𝑦) ≤ ((𝑃‘(𝑘 + 1))‘𝑦))) |
52 | 37, 51 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃‘𝑘)‘𝑦) ≤ ((𝑃‘(𝑘 + 1))‘𝑦)) |
53 | 52 | r19.21bi 3134 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘𝑘)‘𝑦) ≤ ((𝑃‘(𝑘 + 1))‘𝑦)) |
54 | 53 | an32s 649 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑃‘𝑘)‘𝑦) ≤ ((𝑃‘(𝑘 + 1))‘𝑦)) |
55 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑘 + 1) → (𝑃‘𝑛) = (𝑃‘(𝑘 + 1))) |
56 | 55 | fveq1d 6776 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑘 + 1) → ((𝑃‘𝑛)‘𝑦) = ((𝑃‘(𝑘 + 1))‘𝑦)) |
57 | | fvex 6787 |
. . . . . . . . . 10
⊢ ((𝑃‘(𝑘 + 1))‘𝑦) ∈ V |
58 | 56, 3, 57 | fvmpt 6875 |
. . . . . . . . 9
⊢ ((𝑘 + 1) ∈ ℕ →
((𝑛 ∈ ℕ ↦
((𝑃‘𝑛)‘𝑦))‘(𝑘 + 1)) = ((𝑃‘(𝑘 + 1))‘𝑦)) |
59 | 40, 58 | syl 17 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘(𝑘 + 1)) = ((𝑃‘(𝑘 + 1))‘𝑦)) |
60 | 59 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘(𝑘 + 1)) = ((𝑃‘(𝑘 + 1))‘𝑦)) |
61 | 54, 21, 60 | 3brtr4d 5106 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘(𝑘 + 1))) |
62 | 61 | adantllr 716 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘(𝑘 + 1))) |
63 | 7, 8, 16, 29, 62 | climub 15373 |
. . . 4
⊢ (((𝜑 ∧ 𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑀) ≤ (𝐹‘𝑦)) |
64 | 6, 63 | eqbrtrrd 5098 |
. . 3
⊢ (((𝜑 ∧ 𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘𝑀)‘𝑦) ≤ (𝐹‘𝑦)) |
65 | 64 | ralrimiva 3103 |
. 2
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃‘𝑀)‘𝑦) ≤ (𝐹‘𝑦)) |
66 | 22 | ffvelrnda 6961 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (𝑃‘𝑀) ∈ dom
∫1) |
67 | | i1ff 24840 |
. . . 4
⊢ ((𝑃‘𝑀) ∈ dom ∫1 → (𝑃‘𝑀):ℝ⟶ℝ) |
68 | | ffn 6600 |
. . . 4
⊢ ((𝑃‘𝑀):ℝ⟶ℝ → (𝑃‘𝑀) Fn ℝ) |
69 | 66, 67, 68 | 3syl 18 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (𝑃‘𝑀) Fn ℝ) |
70 | | itg2i1fseq.2 |
. . . . 5
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
71 | 70 | ffnd 6601 |
. . . 4
⊢ (𝜑 → 𝐹 Fn ℝ) |
72 | 71 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → 𝐹 Fn ℝ) |
73 | 46 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → ℝ ∈
V) |
74 | | eqidd 2739 |
. . 3
⊢ (((𝜑 ∧ 𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘𝑀)‘𝑦) = ((𝑃‘𝑀)‘𝑦)) |
75 | | eqidd 2739 |
. . 3
⊢ (((𝜑 ∧ 𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) = (𝐹‘𝑦)) |
76 | 69, 72, 73, 73, 48, 74, 75 | ofrfval 7543 |
. 2
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → ((𝑃‘𝑀) ∘r ≤ 𝐹 ↔ ∀𝑦 ∈ ℝ ((𝑃‘𝑀)‘𝑦) ≤ (𝐹‘𝑦))) |
77 | 65, 76 | mpbird 256 |
1
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (𝑃‘𝑀) ∘r ≤ 𝐹) |