MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2i1fseqle Structured version   Visualization version   GIF version

Theorem itg2i1fseqle 25804
Description: Subject to the conditions coming from mbfi1fseq 25771, the sequence of simple functions are all less than the target function 𝐹. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2i1fseq.1 (𝜑𝐹 ∈ MblFn)
itg2i1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2i1fseq.3 (𝜑𝑃:ℕ⟶dom ∫1)
itg2i1fseq.4 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
itg2i1fseq.5 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
Assertion
Ref Expression
itg2i1fseqle ((𝜑𝑀 ∈ ℕ) → (𝑃𝑀) ∘r𝐹)
Distinct variable groups:   𝑥,𝑛,𝐹   𝑛,𝑀   𝑃,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑀(𝑥)

Proof of Theorem itg2i1fseqle
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6907 . . . . . . 7 (𝑛 = 𝑀 → (𝑃𝑛) = (𝑃𝑀))
21fveq1d 6909 . . . . . 6 (𝑛 = 𝑀 → ((𝑃𝑛)‘𝑦) = ((𝑃𝑀)‘𝑦))
3 eqid 2735 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))
4 fvex 6920 . . . . . 6 ((𝑃𝑀)‘𝑦) ∈ V
52, 3, 4fvmpt 7016 . . . . 5 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑀) = ((𝑃𝑀)‘𝑦))
65ad2antlr 727 . . . 4 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑀) = ((𝑃𝑀)‘𝑦))
7 nnuz 12919 . . . . 5 ℕ = (ℤ‘1)
8 simplr 769 . . . . 5 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝑀 ∈ ℕ)
9 itg2i1fseq.5 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
10 fveq2 6907 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑃𝑛)‘𝑥) = ((𝑃𝑛)‘𝑦))
1110mpteq2dv 5250 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)))
12 fveq2 6907 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1311, 12breq12d 5161 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦)))
1413rspccva 3621 . . . . . . 7 ((∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥) ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦))
159, 14sylan 580 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦))
1615adantlr 715 . . . . 5 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦))
17 fveq2 6907 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑃𝑛) = (𝑃𝑘))
1817fveq1d 6909 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝑃𝑛)‘𝑦) = ((𝑃𝑘)‘𝑦))
19 fvex 6920 . . . . . . . . 9 ((𝑃𝑘)‘𝑦) ∈ V
2018, 3, 19fvmpt 7016 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑘) = ((𝑃𝑘)‘𝑦))
2120adantl 481 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑘) = ((𝑃𝑘)‘𝑦))
22 itg2i1fseq.3 . . . . . . . . . . 11 (𝜑𝑃:ℕ⟶dom ∫1)
2322ffvelcdmda 7104 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∈ dom ∫1)
24 i1ff 25725 . . . . . . . . . 10 ((𝑃𝑘) ∈ dom ∫1 → (𝑃𝑘):ℝ⟶ℝ)
2523, 24syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘):ℝ⟶ℝ)
2625ffvelcdmda 7104 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑘)‘𝑦) ∈ ℝ)
2726an32s 652 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑃𝑘)‘𝑦) ∈ ℝ)
2821, 27eqeltrd 2839 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑘) ∈ ℝ)
2928adantllr 719 . . . . 5 ((((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑘) ∈ ℝ)
30 itg2i1fseq.4 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
31 simpr 484 . . . . . . . . . . . . 13 ((0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))
3231ralimi 3081 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → ∀𝑛 ∈ ℕ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))
3330, 32syl 17 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))
34 fvoveq1 7454 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑘 + 1)))
3517, 34breq12d 5161 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))))
3635rspccva 3621 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1)))
3733, 36sylan 580 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1)))
38 ffn 6737 . . . . . . . . . . . 12 ((𝑃𝑘):ℝ⟶ℝ → (𝑃𝑘) Fn ℝ)
3923, 24, 383syl 18 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) Fn ℝ)
40 peano2nn 12276 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
41 ffvelcdm 7101 . . . . . . . . . . . . 13 ((𝑃:ℕ⟶dom ∫1 ∧ (𝑘 + 1) ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1)
4222, 40, 41syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1)
43 i1ff 25725 . . . . . . . . . . . 12 ((𝑃‘(𝑘 + 1)) ∈ dom ∫1 → (𝑃‘(𝑘 + 1)):ℝ⟶ℝ)
44 ffn 6737 . . . . . . . . . . . 12 ((𝑃‘(𝑘 + 1)):ℝ⟶ℝ → (𝑃‘(𝑘 + 1)) Fn ℝ)
4542, 43, 443syl 18 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑃‘(𝑘 + 1)) Fn ℝ)
46 reex 11244 . . . . . . . . . . . 12 ℝ ∈ V
4746a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ℝ ∈ V)
48 inidm 4235 . . . . . . . . . . 11 (ℝ ∩ ℝ) = ℝ
49 eqidd 2736 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑘)‘𝑦) = ((𝑃𝑘)‘𝑦))
50 eqidd 2736 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘(𝑘 + 1))‘𝑦) = ((𝑃‘(𝑘 + 1))‘𝑦))
5139, 45, 47, 47, 48, 49, 50ofrfval 7707 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1)) ↔ ∀𝑦 ∈ ℝ ((𝑃𝑘)‘𝑦) ≤ ((𝑃‘(𝑘 + 1))‘𝑦)))
5237, 51mpbid 232 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃𝑘)‘𝑦) ≤ ((𝑃‘(𝑘 + 1))‘𝑦))
5352r19.21bi 3249 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑘)‘𝑦) ≤ ((𝑃‘(𝑘 + 1))‘𝑦))
5453an32s 652 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑃𝑘)‘𝑦) ≤ ((𝑃‘(𝑘 + 1))‘𝑦))
55 fveq2 6907 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → (𝑃𝑛) = (𝑃‘(𝑘 + 1)))
5655fveq1d 6909 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → ((𝑃𝑛)‘𝑦) = ((𝑃‘(𝑘 + 1))‘𝑦))
57 fvex 6920 . . . . . . . . . 10 ((𝑃‘(𝑘 + 1))‘𝑦) ∈ V
5856, 3, 57fvmpt 7016 . . . . . . . . 9 ((𝑘 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑘 + 1)) = ((𝑃‘(𝑘 + 1))‘𝑦))
5940, 58syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑘 + 1)) = ((𝑃‘(𝑘 + 1))‘𝑦))
6059adantl 481 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑘 + 1)) = ((𝑃‘(𝑘 + 1))‘𝑦))
6154, 21, 603brtr4d 5180 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑘 + 1)))
6261adantllr 719 . . . . 5 ((((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑘 + 1)))
637, 8, 16, 29, 62climub 15695 . . . 4 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑀) ≤ (𝐹𝑦))
646, 63eqbrtrrd 5172 . . 3 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑀)‘𝑦) ≤ (𝐹𝑦))
6564ralrimiva 3144 . 2 ((𝜑𝑀 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃𝑀)‘𝑦) ≤ (𝐹𝑦))
6622ffvelcdmda 7104 . . . 4 ((𝜑𝑀 ∈ ℕ) → (𝑃𝑀) ∈ dom ∫1)
67 i1ff 25725 . . . 4 ((𝑃𝑀) ∈ dom ∫1 → (𝑃𝑀):ℝ⟶ℝ)
68 ffn 6737 . . . 4 ((𝑃𝑀):ℝ⟶ℝ → (𝑃𝑀) Fn ℝ)
6966, 67, 683syl 18 . . 3 ((𝜑𝑀 ∈ ℕ) → (𝑃𝑀) Fn ℝ)
70 itg2i1fseq.2 . . . . 5 (𝜑𝐹:ℝ⟶(0[,)+∞))
7170ffnd 6738 . . . 4 (𝜑𝐹 Fn ℝ)
7271adantr 480 . . 3 ((𝜑𝑀 ∈ ℕ) → 𝐹 Fn ℝ)
7346a1i 11 . . 3 ((𝜑𝑀 ∈ ℕ) → ℝ ∈ V)
74 eqidd 2736 . . 3 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑀)‘𝑦) = ((𝑃𝑀)‘𝑦))
75 eqidd 2736 . . 3 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
7669, 72, 73, 73, 48, 74, 75ofrfval 7707 . 2 ((𝜑𝑀 ∈ ℕ) → ((𝑃𝑀) ∘r𝐹 ↔ ∀𝑦 ∈ ℝ ((𝑃𝑀)‘𝑦) ≤ (𝐹𝑦)))
7765, 76mpbird 257 1 ((𝜑𝑀 ∈ ℕ) → (𝑃𝑀) ∘r𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478   class class class wbr 5148  cmpt 5231  dom cdm 5689   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  r cofr 7696  cr 11152  0cc0 11153  1c1 11154   + caddc 11156  +∞cpnf 11290  cle 11294  cn 12264  [,)cico 13386  cli 15517  MblFncmbf 25663  1citg1 25664  0𝑝c0p 25718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fl 13829  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-itg1 25669
This theorem is referenced by:  itg2i1fseq  25805  itg2i1fseq3  25807  itg2addlem  25808
  Copyright terms: Public domain W3C validator