MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2i1fseqle Structured version   Visualization version   GIF version

Theorem itg2i1fseqle 25789
Description: Subject to the conditions coming from mbfi1fseq 25756, the sequence of simple functions are all less than the target function 𝐹. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2i1fseq.1 (𝜑𝐹 ∈ MblFn)
itg2i1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2i1fseq.3 (𝜑𝑃:ℕ⟶dom ∫1)
itg2i1fseq.4 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
itg2i1fseq.5 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
Assertion
Ref Expression
itg2i1fseqle ((𝜑𝑀 ∈ ℕ) → (𝑃𝑀) ∘r𝐹)
Distinct variable groups:   𝑥,𝑛,𝐹   𝑛,𝑀   𝑃,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑀(𝑥)

Proof of Theorem itg2i1fseqle
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . . . . 7 (𝑛 = 𝑀 → (𝑃𝑛) = (𝑃𝑀))
21fveq1d 6908 . . . . . 6 (𝑛 = 𝑀 → ((𝑃𝑛)‘𝑦) = ((𝑃𝑀)‘𝑦))
3 eqid 2737 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))
4 fvex 6919 . . . . . 6 ((𝑃𝑀)‘𝑦) ∈ V
52, 3, 4fvmpt 7016 . . . . 5 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑀) = ((𝑃𝑀)‘𝑦))
65ad2antlr 727 . . . 4 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑀) = ((𝑃𝑀)‘𝑦))
7 nnuz 12921 . . . . 5 ℕ = (ℤ‘1)
8 simplr 769 . . . . 5 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → 𝑀 ∈ ℕ)
9 itg2i1fseq.5 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
10 fveq2 6906 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑃𝑛)‘𝑥) = ((𝑃𝑛)‘𝑦))
1110mpteq2dv 5244 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)))
12 fveq2 6906 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1311, 12breq12d 5156 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦)))
1413rspccva 3621 . . . . . . 7 ((∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥) ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦))
159, 14sylan 580 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦))
1615adantlr 715 . . . . 5 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦))
17 fveq2 6906 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑃𝑛) = (𝑃𝑘))
1817fveq1d 6908 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝑃𝑛)‘𝑦) = ((𝑃𝑘)‘𝑦))
19 fvex 6919 . . . . . . . . 9 ((𝑃𝑘)‘𝑦) ∈ V
2018, 3, 19fvmpt 7016 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑘) = ((𝑃𝑘)‘𝑦))
2120adantl 481 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑘) = ((𝑃𝑘)‘𝑦))
22 itg2i1fseq.3 . . . . . . . . . . 11 (𝜑𝑃:ℕ⟶dom ∫1)
2322ffvelcdmda 7104 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∈ dom ∫1)
24 i1ff 25711 . . . . . . . . . 10 ((𝑃𝑘) ∈ dom ∫1 → (𝑃𝑘):ℝ⟶ℝ)
2523, 24syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘):ℝ⟶ℝ)
2625ffvelcdmda 7104 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑘)‘𝑦) ∈ ℝ)
2726an32s 652 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑃𝑘)‘𝑦) ∈ ℝ)
2821, 27eqeltrd 2841 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑘) ∈ ℝ)
2928adantllr 719 . . . . 5 ((((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑘) ∈ ℝ)
30 itg2i1fseq.4 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
31 simpr 484 . . . . . . . . . . . . 13 ((0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))
3231ralimi 3083 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → ∀𝑛 ∈ ℕ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))
3330, 32syl 17 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))
34 fvoveq1 7454 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑘 + 1)))
3517, 34breq12d 5156 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))))
3635rspccva 3621 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1)))
3733, 36sylan 580 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1)))
38 ffn 6736 . . . . . . . . . . . 12 ((𝑃𝑘):ℝ⟶ℝ → (𝑃𝑘) Fn ℝ)
3923, 24, 383syl 18 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) Fn ℝ)
40 peano2nn 12278 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
41 ffvelcdm 7101 . . . . . . . . . . . . 13 ((𝑃:ℕ⟶dom ∫1 ∧ (𝑘 + 1) ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1)
4222, 40, 41syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1)
43 i1ff 25711 . . . . . . . . . . . 12 ((𝑃‘(𝑘 + 1)) ∈ dom ∫1 → (𝑃‘(𝑘 + 1)):ℝ⟶ℝ)
44 ffn 6736 . . . . . . . . . . . 12 ((𝑃‘(𝑘 + 1)):ℝ⟶ℝ → (𝑃‘(𝑘 + 1)) Fn ℝ)
4542, 43, 443syl 18 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑃‘(𝑘 + 1)) Fn ℝ)
46 reex 11246 . . . . . . . . . . . 12 ℝ ∈ V
4746a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ℝ ∈ V)
48 inidm 4227 . . . . . . . . . . 11 (ℝ ∩ ℝ) = ℝ
49 eqidd 2738 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑘)‘𝑦) = ((𝑃𝑘)‘𝑦))
50 eqidd 2738 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘(𝑘 + 1))‘𝑦) = ((𝑃‘(𝑘 + 1))‘𝑦))
5139, 45, 47, 47, 48, 49, 50ofrfval 7707 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1)) ↔ ∀𝑦 ∈ ℝ ((𝑃𝑘)‘𝑦) ≤ ((𝑃‘(𝑘 + 1))‘𝑦)))
5237, 51mpbid 232 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃𝑘)‘𝑦) ≤ ((𝑃‘(𝑘 + 1))‘𝑦))
5352r19.21bi 3251 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑘)‘𝑦) ≤ ((𝑃‘(𝑘 + 1))‘𝑦))
5453an32s 652 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑃𝑘)‘𝑦) ≤ ((𝑃‘(𝑘 + 1))‘𝑦))
55 fveq2 6906 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → (𝑃𝑛) = (𝑃‘(𝑘 + 1)))
5655fveq1d 6908 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → ((𝑃𝑛)‘𝑦) = ((𝑃‘(𝑘 + 1))‘𝑦))
57 fvex 6919 . . . . . . . . . 10 ((𝑃‘(𝑘 + 1))‘𝑦) ∈ V
5856, 3, 57fvmpt 7016 . . . . . . . . 9 ((𝑘 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑘 + 1)) = ((𝑃‘(𝑘 + 1))‘𝑦))
5940, 58syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑘 + 1)) = ((𝑃‘(𝑘 + 1))‘𝑦))
6059adantl 481 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑘 + 1)) = ((𝑃‘(𝑘 + 1))‘𝑦))
6154, 21, 603brtr4d 5175 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑘 + 1)))
6261adantllr 719 . . . . 5 ((((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑘 + 1)))
637, 8, 16, 29, 62climub 15698 . . . 4 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑀) ≤ (𝐹𝑦))
646, 63eqbrtrrd 5167 . . 3 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑀)‘𝑦) ≤ (𝐹𝑦))
6564ralrimiva 3146 . 2 ((𝜑𝑀 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃𝑀)‘𝑦) ≤ (𝐹𝑦))
6622ffvelcdmda 7104 . . . 4 ((𝜑𝑀 ∈ ℕ) → (𝑃𝑀) ∈ dom ∫1)
67 i1ff 25711 . . . 4 ((𝑃𝑀) ∈ dom ∫1 → (𝑃𝑀):ℝ⟶ℝ)
68 ffn 6736 . . . 4 ((𝑃𝑀):ℝ⟶ℝ → (𝑃𝑀) Fn ℝ)
6966, 67, 683syl 18 . . 3 ((𝜑𝑀 ∈ ℕ) → (𝑃𝑀) Fn ℝ)
70 itg2i1fseq.2 . . . . 5 (𝜑𝐹:ℝ⟶(0[,)+∞))
7170ffnd 6737 . . . 4 (𝜑𝐹 Fn ℝ)
7271adantr 480 . . 3 ((𝜑𝑀 ∈ ℕ) → 𝐹 Fn ℝ)
7346a1i 11 . . 3 ((𝜑𝑀 ∈ ℕ) → ℝ ∈ V)
74 eqidd 2738 . . 3 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑀)‘𝑦) = ((𝑃𝑀)‘𝑦))
75 eqidd 2738 . . 3 (((𝜑𝑀 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
7669, 72, 73, 73, 48, 74, 75ofrfval 7707 . 2 ((𝜑𝑀 ∈ ℕ) → ((𝑃𝑀) ∘r𝐹 ↔ ∀𝑦 ∈ ℝ ((𝑃𝑀)‘𝑦) ≤ (𝐹𝑦)))
7765, 76mpbird 257 1 ((𝜑𝑀 ∈ ℕ) → (𝑃𝑀) ∘r𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480   class class class wbr 5143  cmpt 5225  dom cdm 5685   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  r cofr 7696  cr 11154  0cc0 11155  1c1 11156   + caddc 11158  +∞cpnf 11292  cle 11296  cn 12266  [,)cico 13389  cli 15520  MblFncmbf 25649  1citg1 25650  0𝑝c0p 25704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fl 13832  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-itg1 25655
This theorem is referenced by:  itg2i1fseq  25790  itg2i1fseq3  25792  itg2addlem  25793
  Copyright terms: Public domain W3C validator