| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofsubge0 | Structured version Visualization version GIF version | ||
| Description: Function analogue of subge0 11755. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| ofsubge0 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹 ∘f − 𝐺) ↔ 𝐺 ∘r ≤ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐹:𝐴⟶ℝ) | |
| 2 | 1 | ffvelcdmda 7079 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ) |
| 3 | simp3 1138 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐺:𝐴⟶ℝ) | |
| 4 | 3 | ffvelcdmda 7079 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ℝ) |
| 5 | 2, 4 | subge0d 11832 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → (0 ≤ ((𝐹‘𝑥) − (𝐺‘𝑥)) ↔ (𝐺‘𝑥) ≤ (𝐹‘𝑥))) |
| 6 | 5 | ralbidva 3162 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (∀𝑥 ∈ 𝐴 0 ≤ ((𝐹‘𝑥) − (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) ≤ (𝐹‘𝑥))) |
| 7 | 0cn 11232 | . . . 4 ⊢ 0 ∈ ℂ | |
| 8 | fnconstg 6771 | . . . 4 ⊢ (0 ∈ ℂ → (𝐴 × {0}) Fn 𝐴) | |
| 9 | 7, 8 | mp1i 13 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐴 × {0}) Fn 𝐴) |
| 10 | 1 | ffnd 6712 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐹 Fn 𝐴) |
| 11 | 3 | ffnd 6712 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐺 Fn 𝐴) |
| 12 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐴 ∈ 𝑉) | |
| 13 | inidm 4207 | . . . 4 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 14 | 10, 11, 12, 12, 13 | offn 7689 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐹 ∘f − 𝐺) Fn 𝐴) |
| 15 | c0ex 11234 | . . . . 5 ⊢ 0 ∈ V | |
| 16 | 15 | fvconst2 7201 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
| 17 | 16 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
| 18 | eqidd 2737 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 19 | eqidd 2737 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 20 | 10, 11, 12, 12, 13, 18, 19 | ofval 7687 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f − 𝐺)‘𝑥) = ((𝐹‘𝑥) − (𝐺‘𝑥))) |
| 21 | 9, 14, 12, 12, 13, 17, 20 | ofrfval 7686 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹 ∘f − 𝐺) ↔ ∀𝑥 ∈ 𝐴 0 ≤ ((𝐹‘𝑥) − (𝐺‘𝑥)))) |
| 22 | 11, 10, 12, 12, 13, 19, 18 | ofrfval 7686 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐺 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) ≤ (𝐹‘𝑥))) |
| 23 | 6, 21, 22 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹 ∘f − 𝐺) ↔ 𝐺 ∘r ≤ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {csn 4606 class class class wbr 5124 × cxp 5657 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∘f cof 7674 ∘r cofr 7675 ℂcc 11132 ℝcr 11133 0cc0 11134 ≤ cle 11275 − cmin 11471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-ofr 7677 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |