MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofsubge0 Structured version   Visualization version   GIF version

Theorem ofsubge0 11902
Description: Function analogue of subge0 11418. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
ofsubge0 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹f𝐺) ↔ 𝐺r𝐹))

Proof of Theorem ofsubge0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1135 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐹:𝐴⟶ℝ)
21ffvelrnda 6943 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
3 simp3 1136 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐺:𝐴⟶ℝ)
43ffvelrnda 6943 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℝ)
52, 4subge0d 11495 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (0 ≤ ((𝐹𝑥) − (𝐺𝑥)) ↔ (𝐺𝑥) ≤ (𝐹𝑥)))
65ralbidva 3119 . 2 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (∀𝑥𝐴 0 ≤ ((𝐹𝑥) − (𝐺𝑥)) ↔ ∀𝑥𝐴 (𝐺𝑥) ≤ (𝐹𝑥)))
7 0cn 10898 . . . 4 0 ∈ ℂ
8 fnconstg 6646 . . . 4 (0 ∈ ℂ → (𝐴 × {0}) Fn 𝐴)
97, 8mp1i 13 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐴 × {0}) Fn 𝐴)
101ffnd 6585 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐹 Fn 𝐴)
113ffnd 6585 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐺 Fn 𝐴)
12 simp1 1134 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐴𝑉)
13 inidm 4149 . . . 4 (𝐴𝐴) = 𝐴
1410, 11, 12, 12, 13offn 7524 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐹f𝐺) Fn 𝐴)
15 c0ex 10900 . . . . 5 0 ∈ V
1615fvconst2 7061 . . . 4 (𝑥𝐴 → ((𝐴 × {0})‘𝑥) = 0)
1716adantl 481 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → ((𝐴 × {0})‘𝑥) = 0)
18 eqidd 2739 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
19 eqidd 2739 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
2010, 11, 12, 12, 13, 18, 19ofval 7522 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → ((𝐹f𝐺)‘𝑥) = ((𝐹𝑥) − (𝐺𝑥)))
219, 14, 12, 12, 13, 17, 20ofrfval 7521 . 2 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹f𝐺) ↔ ∀𝑥𝐴 0 ≤ ((𝐹𝑥) − (𝐺𝑥))))
2211, 10, 12, 12, 13, 19, 18ofrfval 7521 . 2 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐺r𝐹 ↔ ∀𝑥𝐴 (𝐺𝑥) ≤ (𝐹𝑥)))
236, 21, 223bitr4d 310 1 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹f𝐺) ↔ 𝐺r𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {csn 4558   class class class wbr 5070   × cxp 5578   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  r cofr 7510  cc 10800  cr 10801  0cc0 10802  cle 10941  cmin 11135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator