Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofsubge0 Structured version   Visualization version   GIF version

Theorem ofsubge0 11663
 Description: Function analogue of subge0 11181. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
ofsubge0 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹f𝐺) ↔ 𝐺r𝐹))

Proof of Theorem ofsubge0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1135 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐹:𝐴⟶ℝ)
21ffvelrnda 6840 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
3 simp3 1136 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐺:𝐴⟶ℝ)
43ffvelrnda 6840 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℝ)
52, 4subge0d 11258 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (0 ≤ ((𝐹𝑥) − (𝐺𝑥)) ↔ (𝐺𝑥) ≤ (𝐹𝑥)))
65ralbidva 3126 . 2 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (∀𝑥𝐴 0 ≤ ((𝐹𝑥) − (𝐺𝑥)) ↔ ∀𝑥𝐴 (𝐺𝑥) ≤ (𝐹𝑥)))
7 0cn 10661 . . . 4 0 ∈ ℂ
8 fnconstg 6550 . . . 4 (0 ∈ ℂ → (𝐴 × {0}) Fn 𝐴)
97, 8mp1i 13 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐴 × {0}) Fn 𝐴)
101ffnd 6497 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐹 Fn 𝐴)
113ffnd 6497 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐺 Fn 𝐴)
12 simp1 1134 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐴𝑉)
13 inidm 4124 . . . 4 (𝐴𝐴) = 𝐴
1410, 11, 12, 12, 13offn 7415 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐹f𝐺) Fn 𝐴)
15 c0ex 10663 . . . . 5 0 ∈ V
1615fvconst2 6955 . . . 4 (𝑥𝐴 → ((𝐴 × {0})‘𝑥) = 0)
1716adantl 486 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → ((𝐴 × {0})‘𝑥) = 0)
18 eqidd 2760 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
19 eqidd 2760 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
2010, 11, 12, 12, 13, 18, 19ofval 7413 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → ((𝐹f𝐺)‘𝑥) = ((𝐹𝑥) − (𝐺𝑥)))
219, 14, 12, 12, 13, 17, 20ofrfval 7412 . 2 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹f𝐺) ↔ ∀𝑥𝐴 0 ≤ ((𝐹𝑥) − (𝐺𝑥))))
2211, 10, 12, 12, 13, 19, 18ofrfval 7412 . 2 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐺r𝐹 ↔ ∀𝑥𝐴 (𝐺𝑥) ≤ (𝐹𝑥)))
236, 21, 223bitr4d 315 1 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹f𝐺) ↔ 𝐺r𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112  ∀wral 3071  {csn 4520   class class class wbr 5030   × cxp 5520   Fn wfn 6328  ⟶wf 6329  ‘cfv 6333  (class class class)co 7148   ∘f cof 7401   ∘r cofr 7402  ℂcc 10563  ℝcr 10564  0cc0 10565   ≤ cle 10704   − cmin 10898 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-op 4527  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5428  df-po 5441  df-so 5442  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7403  df-ofr 7404  df-er 8297  df-en 8526  df-dom 8527  df-sdom 8528  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator