| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofsubge0 | Structured version Visualization version GIF version | ||
| Description: Function analogue of subge0 11667. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| ofsubge0 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹 ∘f − 𝐺) ↔ 𝐺 ∘r ≤ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐹:𝐴⟶ℝ) | |
| 2 | 1 | ffvelcdmda 7038 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ) |
| 3 | simp3 1138 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐺:𝐴⟶ℝ) | |
| 4 | 3 | ffvelcdmda 7038 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ℝ) |
| 5 | 2, 4 | subge0d 11744 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → (0 ≤ ((𝐹‘𝑥) − (𝐺‘𝑥)) ↔ (𝐺‘𝑥) ≤ (𝐹‘𝑥))) |
| 6 | 5 | ralbidva 3154 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (∀𝑥 ∈ 𝐴 0 ≤ ((𝐹‘𝑥) − (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) ≤ (𝐹‘𝑥))) |
| 7 | 0cn 11142 | . . . 4 ⊢ 0 ∈ ℂ | |
| 8 | fnconstg 6730 | . . . 4 ⊢ (0 ∈ ℂ → (𝐴 × {0}) Fn 𝐴) | |
| 9 | 7, 8 | mp1i 13 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐴 × {0}) Fn 𝐴) |
| 10 | 1 | ffnd 6671 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐹 Fn 𝐴) |
| 11 | 3 | ffnd 6671 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐺 Fn 𝐴) |
| 12 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐴 ∈ 𝑉) | |
| 13 | inidm 4186 | . . . 4 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 14 | 10, 11, 12, 12, 13 | offn 7646 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐹 ∘f − 𝐺) Fn 𝐴) |
| 15 | c0ex 11144 | . . . . 5 ⊢ 0 ∈ V | |
| 16 | 15 | fvconst2 7160 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
| 17 | 16 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
| 18 | eqidd 2730 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 19 | eqidd 2730 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 20 | 10, 11, 12, 12, 13, 18, 19 | ofval 7644 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f − 𝐺)‘𝑥) = ((𝐹‘𝑥) − (𝐺‘𝑥))) |
| 21 | 9, 14, 12, 12, 13, 17, 20 | ofrfval 7643 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹 ∘f − 𝐺) ↔ ∀𝑥 ∈ 𝐴 0 ≤ ((𝐹‘𝑥) − (𝐺‘𝑥)))) |
| 22 | 11, 10, 12, 12, 13, 19, 18 | ofrfval 7643 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐺 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) ≤ (𝐹‘𝑥))) |
| 23 | 6, 21, 22 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹 ∘f − 𝐺) ↔ 𝐺 ∘r ≤ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {csn 4585 class class class wbr 5102 × cxp 5629 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∘f cof 7631 ∘r cofr 7632 ℂcc 11042 ℝcr 11043 0cc0 11044 ≤ cle 11185 − cmin 11381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |