MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofsubge0 Structured version   Visualization version   GIF version

Theorem ofsubge0 12119
Description: Function analogue of subge0 11625. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
ofsubge0 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹f𝐺) ↔ 𝐺r𝐹))

Proof of Theorem ofsubge0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐹:𝐴⟶ℝ)
21ffvelcdmda 7012 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
3 simp3 1138 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐺:𝐴⟶ℝ)
43ffvelcdmda 7012 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℝ)
52, 4subge0d 11702 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (0 ≤ ((𝐹𝑥) − (𝐺𝑥)) ↔ (𝐺𝑥) ≤ (𝐹𝑥)))
65ralbidva 3153 . 2 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (∀𝑥𝐴 0 ≤ ((𝐹𝑥) − (𝐺𝑥)) ↔ ∀𝑥𝐴 (𝐺𝑥) ≤ (𝐹𝑥)))
7 0cn 11099 . . . 4 0 ∈ ℂ
8 fnconstg 6706 . . . 4 (0 ∈ ℂ → (𝐴 × {0}) Fn 𝐴)
97, 8mp1i 13 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐴 × {0}) Fn 𝐴)
101ffnd 6647 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐹 Fn 𝐴)
113ffnd 6647 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐺 Fn 𝐴)
12 simp1 1136 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐴𝑉)
13 inidm 4172 . . . 4 (𝐴𝐴) = 𝐴
1410, 11, 12, 12, 13offn 7618 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐹f𝐺) Fn 𝐴)
15 c0ex 11101 . . . . 5 0 ∈ V
1615fvconst2 7133 . . . 4 (𝑥𝐴 → ((𝐴 × {0})‘𝑥) = 0)
1716adantl 481 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → ((𝐴 × {0})‘𝑥) = 0)
18 eqidd 2732 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
19 eqidd 2732 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
2010, 11, 12, 12, 13, 18, 19ofval 7616 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → ((𝐹f𝐺)‘𝑥) = ((𝐹𝑥) − (𝐺𝑥)))
219, 14, 12, 12, 13, 17, 20ofrfval 7615 . 2 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹f𝐺) ↔ ∀𝑥𝐴 0 ≤ ((𝐹𝑥) − (𝐺𝑥))))
2211, 10, 12, 12, 13, 19, 18ofrfval 7615 . 2 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐺r𝐹 ↔ ∀𝑥𝐴 (𝐺𝑥) ≤ (𝐹𝑥)))
236, 21, 223bitr4d 311 1 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹f𝐺) ↔ 𝐺r𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  {csn 4571   class class class wbr 5086   × cxp 5609   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7341  f cof 7603  r cofr 7604  cc 10999  cr 11000  0cc0 11001  cle 11142  cmin 11339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator