![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofsubge0 | Structured version Visualization version GIF version |
Description: Function analogue of subge0 11752. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
ofsubge0 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹 ∘f − 𝐺) ↔ 𝐺 ∘r ≤ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1135 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐹:𝐴⟶ℝ) | |
2 | 1 | ffvelcdmda 7089 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ) |
3 | simp3 1136 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐺:𝐴⟶ℝ) | |
4 | 3 | ffvelcdmda 7089 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ℝ) |
5 | 2, 4 | subge0d 11829 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → (0 ≤ ((𝐹‘𝑥) − (𝐺‘𝑥)) ↔ (𝐺‘𝑥) ≤ (𝐹‘𝑥))) |
6 | 5 | ralbidva 3171 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (∀𝑥 ∈ 𝐴 0 ≤ ((𝐹‘𝑥) − (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) ≤ (𝐹‘𝑥))) |
7 | 0cn 11231 | . . . 4 ⊢ 0 ∈ ℂ | |
8 | fnconstg 6780 | . . . 4 ⊢ (0 ∈ ℂ → (𝐴 × {0}) Fn 𝐴) | |
9 | 7, 8 | mp1i 13 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐴 × {0}) Fn 𝐴) |
10 | 1 | ffnd 6718 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐹 Fn 𝐴) |
11 | 3 | ffnd 6718 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐺 Fn 𝐴) |
12 | simp1 1134 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐴 ∈ 𝑉) | |
13 | inidm 4215 | . . . 4 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
14 | 10, 11, 12, 12, 13 | offn 7693 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐹 ∘f − 𝐺) Fn 𝐴) |
15 | c0ex 11233 | . . . . 5 ⊢ 0 ∈ V | |
16 | 15 | fvconst2 7211 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
17 | 16 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
18 | eqidd 2729 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
19 | eqidd 2729 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
20 | 10, 11, 12, 12, 13, 18, 19 | ofval 7691 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f − 𝐺)‘𝑥) = ((𝐹‘𝑥) − (𝐺‘𝑥))) |
21 | 9, 14, 12, 12, 13, 17, 20 | ofrfval 7690 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹 ∘f − 𝐺) ↔ ∀𝑥 ∈ 𝐴 0 ≤ ((𝐹‘𝑥) − (𝐺‘𝑥)))) |
22 | 11, 10, 12, 12, 13, 19, 18 | ofrfval 7690 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐺 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) ≤ (𝐹‘𝑥))) |
23 | 6, 21, 22 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹 ∘f − 𝐺) ↔ 𝐺 ∘r ≤ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∀wral 3057 {csn 4625 class class class wbr 5143 × cxp 5671 Fn wfn 6538 ⟶wf 6539 ‘cfv 6543 (class class class)co 7415 ∘f cof 7678 ∘r cofr 7679 ℂcc 11131 ℝcr 11132 0cc0 11133 ≤ cle 11274 − cmin 11469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-po 5585 df-so 5586 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7680 df-ofr 7681 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |