MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofsubge0 Structured version   Visualization version   GIF version

Theorem ofsubge0 12292
Description: Function analogue of subge0 11803. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
ofsubge0 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹f𝐺) ↔ 𝐺r𝐹))

Proof of Theorem ofsubge0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐹:𝐴⟶ℝ)
21ffvelcdmda 7118 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
3 simp3 1138 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐺:𝐴⟶ℝ)
43ffvelcdmda 7118 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℝ)
52, 4subge0d 11880 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (0 ≤ ((𝐹𝑥) − (𝐺𝑥)) ↔ (𝐺𝑥) ≤ (𝐹𝑥)))
65ralbidva 3182 . 2 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (∀𝑥𝐴 0 ≤ ((𝐹𝑥) − (𝐺𝑥)) ↔ ∀𝑥𝐴 (𝐺𝑥) ≤ (𝐹𝑥)))
7 0cn 11282 . . . 4 0 ∈ ℂ
8 fnconstg 6809 . . . 4 (0 ∈ ℂ → (𝐴 × {0}) Fn 𝐴)
97, 8mp1i 13 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐴 × {0}) Fn 𝐴)
101ffnd 6748 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐹 Fn 𝐴)
113ffnd 6748 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐺 Fn 𝐴)
12 simp1 1136 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → 𝐴𝑉)
13 inidm 4248 . . . 4 (𝐴𝐴) = 𝐴
1410, 11, 12, 12, 13offn 7727 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐹f𝐺) Fn 𝐴)
15 c0ex 11284 . . . . 5 0 ∈ V
1615fvconst2 7241 . . . 4 (𝑥𝐴 → ((𝐴 × {0})‘𝑥) = 0)
1716adantl 481 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → ((𝐴 × {0})‘𝑥) = 0)
18 eqidd 2741 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
19 eqidd 2741 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
2010, 11, 12, 12, 13, 18, 19ofval 7725 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) ∧ 𝑥𝐴) → ((𝐹f𝐺)‘𝑥) = ((𝐹𝑥) − (𝐺𝑥)))
219, 14, 12, 12, 13, 17, 20ofrfval 7724 . 2 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹f𝐺) ↔ ∀𝑥𝐴 0 ≤ ((𝐹𝑥) − (𝐺𝑥))))
2211, 10, 12, 12, 13, 19, 18ofrfval 7724 . 2 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → (𝐺r𝐹 ↔ ∀𝑥𝐴 (𝐺𝑥) ≤ (𝐹𝑥)))
236, 21, 223bitr4d 311 1 ((𝐴𝑉𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ) → ((𝐴 × {0}) ∘r ≤ (𝐹f𝐺) ↔ 𝐺r𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {csn 4648   class class class wbr 5166   × cxp 5698   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  r cofr 7713  cc 11182  cr 11183  0cc0 11184  cle 11325  cmin 11520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator