MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2ge0 Structured version   Visualization version   GIF version

Theorem itg2ge0 25615
Description: The integral of a nonnegative real function is greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itg2ge0 (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2𝐹))

Proof of Theorem itg2ge0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itg10 25567 . 2 (∫1‘(ℝ × {0})) = 0
2 ffvelcdm 7076 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,]+∞))
3 0xr 11262 . . . . . . . 8 0 ∈ ℝ*
4 pnfxr 11269 . . . . . . . 8 +∞ ∈ ℝ*
5 elicc1 13371 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐹𝑦) ∈ (0[,]+∞) ↔ ((𝐹𝑦) ∈ ℝ* ∧ 0 ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ +∞)))
63, 4, 5mp2an 689 . . . . . . 7 ((𝐹𝑦) ∈ (0[,]+∞) ↔ ((𝐹𝑦) ∈ ℝ* ∧ 0 ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ +∞))
76simp2bi 1143 . . . . . 6 ((𝐹𝑦) ∈ (0[,]+∞) → 0 ≤ (𝐹𝑦))
82, 7syl 17 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → 0 ≤ (𝐹𝑦))
98ralrimiva 3140 . . . 4 (𝐹:ℝ⟶(0[,]+∞) → ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦))
10 0re 11217 . . . . . 6 0 ∈ ℝ
11 fnconstg 6772 . . . . . 6 (0 ∈ ℝ → (ℝ × {0}) Fn ℝ)
1210, 11mp1i 13 . . . . 5 (𝐹:ℝ⟶(0[,]+∞) → (ℝ × {0}) Fn ℝ)
13 ffn 6710 . . . . 5 (𝐹:ℝ⟶(0[,]+∞) → 𝐹 Fn ℝ)
14 reex 11200 . . . . . 6 ℝ ∈ V
1514a1i 11 . . . . 5 (𝐹:ℝ⟶(0[,]+∞) → ℝ ∈ V)
16 inidm 4213 . . . . 5 (ℝ ∩ ℝ) = ℝ
17 c0ex 11209 . . . . . . 7 0 ∈ V
1817fvconst2 7200 . . . . . 6 (𝑦 ∈ ℝ → ((ℝ × {0})‘𝑦) = 0)
1918adantl 481 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → ((ℝ × {0})‘𝑦) = 0)
20 eqidd 2727 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
2112, 13, 15, 15, 16, 19, 20ofrfval 7676 . . . 4 (𝐹:ℝ⟶(0[,]+∞) → ((ℝ × {0}) ∘r𝐹 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦)))
229, 21mpbird 257 . . 3 (𝐹:ℝ⟶(0[,]+∞) → (ℝ × {0}) ∘r𝐹)
23 i1f0 25566 . . . 4 (ℝ × {0}) ∈ dom ∫1
24 itg2ub 25613 . . . 4 ((𝐹:ℝ⟶(0[,]+∞) ∧ (ℝ × {0}) ∈ dom ∫1 ∧ (ℝ × {0}) ∘r𝐹) → (∫1‘(ℝ × {0})) ≤ (∫2𝐹))
2523, 24mp3an2 1445 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ (ℝ × {0}) ∘r𝐹) → (∫1‘(ℝ × {0})) ≤ (∫2𝐹))
2622, 25mpdan 684 . 2 (𝐹:ℝ⟶(0[,]+∞) → (∫1‘(ℝ × {0})) ≤ (∫2𝐹))
271, 26eqbrtrrid 5177 1 (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3055  Vcvv 3468  {csn 4623   class class class wbr 5141   × cxp 5667  dom cdm 5669   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7404  r cofr 7665  cr 11108  0cc0 11109  +∞cpnf 11246  *cxr 11248  cle 11250  [,]cicc 13330  1citg1 25494  2citg2 25495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7666  df-ofr 7667  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-2o 8465  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-inf 9437  df-oi 9504  df-dju 9895  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-nn 12214  df-2 12276  df-3 12277  df-n0 12474  df-z 12560  df-uz 12824  df-q 12934  df-rp 12978  df-xadd 13096  df-ioo 13331  df-ico 13333  df-icc 13334  df-fz 13488  df-fzo 13631  df-fl 13760  df-seq 13970  df-exp 14030  df-hash 14293  df-cj 15049  df-re 15050  df-im 15051  df-sqrt 15185  df-abs 15186  df-clim 15435  df-sum 15636  df-xmet 21228  df-met 21229  df-ovol 25343  df-vol 25344  df-mbf 25498  df-itg1 25499  df-itg2 25500
This theorem is referenced by:  itg2lecl  25618  itg2const2  25621  itg2seq  25622  itg2monolem2  25631  itg2monolem3  25632  itg2gt0  25640
  Copyright terms: Public domain W3C validator