![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg2ge0 | Structured version Visualization version GIF version |
Description: The integral of a nonnegative real function is greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2ge0 | ⊢ (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg10 25196 | . 2 ⊢ (∫1‘(ℝ × {0})) = 0 | |
2 | ffvelcdm 7080 | . . . . . 6 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ (0[,]+∞)) | |
3 | 0xr 11257 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
4 | pnfxr 11264 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
5 | elicc1 13364 | . . . . . . . 8 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐹‘𝑦) ∈ (0[,]+∞) ↔ ((𝐹‘𝑦) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑦) ∧ (𝐹‘𝑦) ≤ +∞))) | |
6 | 3, 4, 5 | mp2an 690 | . . . . . . 7 ⊢ ((𝐹‘𝑦) ∈ (0[,]+∞) ↔ ((𝐹‘𝑦) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑦) ∧ (𝐹‘𝑦) ≤ +∞)) |
7 | 6 | simp2bi 1146 | . . . . . 6 ⊢ ((𝐹‘𝑦) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝑦)) |
8 | 2, 7 | syl 17 | . . . . 5 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → 0 ≤ (𝐹‘𝑦)) |
9 | 8 | ralrimiva 3146 | . . . 4 ⊢ (𝐹:ℝ⟶(0[,]+∞) → ∀𝑦 ∈ ℝ 0 ≤ (𝐹‘𝑦)) |
10 | 0re 11212 | . . . . . 6 ⊢ 0 ∈ ℝ | |
11 | fnconstg 6776 | . . . . . 6 ⊢ (0 ∈ ℝ → (ℝ × {0}) Fn ℝ) | |
12 | 10, 11 | mp1i 13 | . . . . 5 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (ℝ × {0}) Fn ℝ) |
13 | ffn 6714 | . . . . 5 ⊢ (𝐹:ℝ⟶(0[,]+∞) → 𝐹 Fn ℝ) | |
14 | reex 11197 | . . . . . 6 ⊢ ℝ ∈ V | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝐹:ℝ⟶(0[,]+∞) → ℝ ∈ V) |
16 | inidm 4217 | . . . . 5 ⊢ (ℝ ∩ ℝ) = ℝ | |
17 | c0ex 11204 | . . . . . . 7 ⊢ 0 ∈ V | |
18 | 17 | fvconst2 7201 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → ((ℝ × {0})‘𝑦) = 0) |
19 | 18 | adantl 482 | . . . . 5 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → ((ℝ × {0})‘𝑦) = 0) |
20 | eqidd 2733 | . . . . 5 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) = (𝐹‘𝑦)) | |
21 | 12, 13, 15, 15, 16, 19, 20 | ofrfval 7676 | . . . 4 ⊢ (𝐹:ℝ⟶(0[,]+∞) → ((ℝ × {0}) ∘r ≤ 𝐹 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹‘𝑦))) |
22 | 9, 21 | mpbird 256 | . . 3 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (ℝ × {0}) ∘r ≤ 𝐹) |
23 | i1f0 25195 | . . . 4 ⊢ (ℝ × {0}) ∈ dom ∫1 | |
24 | itg2ub 25242 | . . . 4 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (ℝ × {0}) ∈ dom ∫1 ∧ (ℝ × {0}) ∘r ≤ 𝐹) → (∫1‘(ℝ × {0})) ≤ (∫2‘𝐹)) | |
25 | 23, 24 | mp3an2 1449 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (ℝ × {0}) ∘r ≤ 𝐹) → (∫1‘(ℝ × {0})) ≤ (∫2‘𝐹)) |
26 | 22, 25 | mpdan 685 | . 2 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫1‘(ℝ × {0})) ≤ (∫2‘𝐹)) |
27 | 1, 26 | eqbrtrrid 5183 | 1 ⊢ (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 {csn 4627 class class class wbr 5147 × cxp 5673 dom cdm 5675 Fn wfn 6535 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 ∘r cofr 7665 ℝcr 11105 0cc0 11106 +∞cpnf 11241 ℝ*cxr 11243 ≤ cle 11245 [,]cicc 13323 ∫1citg1 25123 ∫2citg2 25124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-ofr 7667 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-xadd 13089 df-ioo 13324 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 df-xmet 20929 df-met 20930 df-ovol 24972 df-vol 24973 df-mbf 25127 df-itg1 25128 df-itg2 25129 |
This theorem is referenced by: itg2lecl 25247 itg2const2 25250 itg2seq 25251 itg2monolem2 25260 itg2monolem3 25261 itg2gt0 25269 |
Copyright terms: Public domain | W3C validator |