| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg2ge0 | Structured version Visualization version GIF version | ||
| Description: The integral of a nonnegative real function is greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| itg2ge0 | ⊢ (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg10 25589 | . 2 ⊢ (∫1‘(ℝ × {0})) = 0 | |
| 2 | ffvelcdm 7053 | . . . . . 6 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ (0[,]+∞)) | |
| 3 | 0xr 11221 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 4 | pnfxr 11228 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
| 5 | elicc1 13350 | . . . . . . . 8 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐹‘𝑦) ∈ (0[,]+∞) ↔ ((𝐹‘𝑦) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑦) ∧ (𝐹‘𝑦) ≤ +∞))) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . . . . 7 ⊢ ((𝐹‘𝑦) ∈ (0[,]+∞) ↔ ((𝐹‘𝑦) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑦) ∧ (𝐹‘𝑦) ≤ +∞)) |
| 7 | 6 | simp2bi 1146 | . . . . . 6 ⊢ ((𝐹‘𝑦) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝑦)) |
| 8 | 2, 7 | syl 17 | . . . . 5 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → 0 ≤ (𝐹‘𝑦)) |
| 9 | 8 | ralrimiva 3125 | . . . 4 ⊢ (𝐹:ℝ⟶(0[,]+∞) → ∀𝑦 ∈ ℝ 0 ≤ (𝐹‘𝑦)) |
| 10 | 0re 11176 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 11 | fnconstg 6748 | . . . . . 6 ⊢ (0 ∈ ℝ → (ℝ × {0}) Fn ℝ) | |
| 12 | 10, 11 | mp1i 13 | . . . . 5 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (ℝ × {0}) Fn ℝ) |
| 13 | ffn 6688 | . . . . 5 ⊢ (𝐹:ℝ⟶(0[,]+∞) → 𝐹 Fn ℝ) | |
| 14 | reex 11159 | . . . . . 6 ⊢ ℝ ∈ V | |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (𝐹:ℝ⟶(0[,]+∞) → ℝ ∈ V) |
| 16 | inidm 4190 | . . . . 5 ⊢ (ℝ ∩ ℝ) = ℝ | |
| 17 | c0ex 11168 | . . . . . . 7 ⊢ 0 ∈ V | |
| 18 | 17 | fvconst2 7178 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → ((ℝ × {0})‘𝑦) = 0) |
| 19 | 18 | adantl 481 | . . . . 5 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → ((ℝ × {0})‘𝑦) = 0) |
| 20 | eqidd 2730 | . . . . 5 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) = (𝐹‘𝑦)) | |
| 21 | 12, 13, 15, 15, 16, 19, 20 | ofrfval 7663 | . . . 4 ⊢ (𝐹:ℝ⟶(0[,]+∞) → ((ℝ × {0}) ∘r ≤ 𝐹 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹‘𝑦))) |
| 22 | 9, 21 | mpbird 257 | . . 3 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (ℝ × {0}) ∘r ≤ 𝐹) |
| 23 | i1f0 25588 | . . . 4 ⊢ (ℝ × {0}) ∈ dom ∫1 | |
| 24 | itg2ub 25634 | . . . 4 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (ℝ × {0}) ∈ dom ∫1 ∧ (ℝ × {0}) ∘r ≤ 𝐹) → (∫1‘(ℝ × {0})) ≤ (∫2‘𝐹)) | |
| 25 | 23, 24 | mp3an2 1451 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (ℝ × {0}) ∘r ≤ 𝐹) → (∫1‘(ℝ × {0})) ≤ (∫2‘𝐹)) |
| 26 | 22, 25 | mpdan 687 | . 2 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫1‘(ℝ × {0})) ≤ (∫2‘𝐹)) |
| 27 | 1, 26 | eqbrtrrid 5143 | 1 ⊢ (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 {csn 4589 class class class wbr 5107 × cxp 5636 dom cdm 5638 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∘r cofr 7652 ℝcr 11067 0cc0 11068 +∞cpnf 11205 ℝ*cxr 11207 ≤ cle 11209 [,]cicc 13309 ∫1citg1 25516 ∫2citg2 25517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xadd 13073 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-xmet 21257 df-met 21258 df-ovol 25365 df-vol 25366 df-mbf 25520 df-itg1 25521 df-itg2 25522 |
| This theorem is referenced by: itg2lecl 25639 itg2const2 25642 itg2seq 25643 itg2monolem2 25652 itg2monolem3 25653 itg2gt0 25661 |
| Copyright terms: Public domain | W3C validator |