MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2ge0 Structured version   Visualization version   GIF version

Theorem itg2ge0 24910
Description: The integral of a nonnegative real function is greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itg2ge0 (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2𝐹))

Proof of Theorem itg2ge0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itg10 24862 . 2 (∫1‘(ℝ × {0})) = 0
2 ffvelrn 6951 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,]+∞))
3 0xr 11032 . . . . . . . 8 0 ∈ ℝ*
4 pnfxr 11039 . . . . . . . 8 +∞ ∈ ℝ*
5 elicc1 13133 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐹𝑦) ∈ (0[,]+∞) ↔ ((𝐹𝑦) ∈ ℝ* ∧ 0 ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ +∞)))
63, 4, 5mp2an 689 . . . . . . 7 ((𝐹𝑦) ∈ (0[,]+∞) ↔ ((𝐹𝑦) ∈ ℝ* ∧ 0 ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ +∞))
76simp2bi 1145 . . . . . 6 ((𝐹𝑦) ∈ (0[,]+∞) → 0 ≤ (𝐹𝑦))
82, 7syl 17 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → 0 ≤ (𝐹𝑦))
98ralrimiva 3108 . . . 4 (𝐹:ℝ⟶(0[,]+∞) → ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦))
10 0re 10987 . . . . . 6 0 ∈ ℝ
11 fnconstg 6654 . . . . . 6 (0 ∈ ℝ → (ℝ × {0}) Fn ℝ)
1210, 11mp1i 13 . . . . 5 (𝐹:ℝ⟶(0[,]+∞) → (ℝ × {0}) Fn ℝ)
13 ffn 6592 . . . . 5 (𝐹:ℝ⟶(0[,]+∞) → 𝐹 Fn ℝ)
14 reex 10972 . . . . . 6 ℝ ∈ V
1514a1i 11 . . . . 5 (𝐹:ℝ⟶(0[,]+∞) → ℝ ∈ V)
16 inidm 4152 . . . . 5 (ℝ ∩ ℝ) = ℝ
17 c0ex 10979 . . . . . . 7 0 ∈ V
1817fvconst2 7071 . . . . . 6 (𝑦 ∈ ℝ → ((ℝ × {0})‘𝑦) = 0)
1918adantl 482 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → ((ℝ × {0})‘𝑦) = 0)
20 eqidd 2739 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
2112, 13, 15, 15, 16, 19, 20ofrfval 7533 . . . 4 (𝐹:ℝ⟶(0[,]+∞) → ((ℝ × {0}) ∘r𝐹 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦)))
229, 21mpbird 256 . . 3 (𝐹:ℝ⟶(0[,]+∞) → (ℝ × {0}) ∘r𝐹)
23 i1f0 24861 . . . 4 (ℝ × {0}) ∈ dom ∫1
24 itg2ub 24908 . . . 4 ((𝐹:ℝ⟶(0[,]+∞) ∧ (ℝ × {0}) ∈ dom ∫1 ∧ (ℝ × {0}) ∘r𝐹) → (∫1‘(ℝ × {0})) ≤ (∫2𝐹))
2523, 24mp3an2 1448 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ (ℝ × {0}) ∘r𝐹) → (∫1‘(ℝ × {0})) ≤ (∫2𝐹))
2622, 25mpdan 684 . 2 (𝐹:ℝ⟶(0[,]+∞) → (∫1‘(ℝ × {0})) ≤ (∫2𝐹))
271, 26eqbrtrrid 5109 1 (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3429  {csn 4561   class class class wbr 5073   × cxp 5582  dom cdm 5584   Fn wfn 6421  wf 6422  cfv 6426  (class class class)co 7267  r cofr 7522  cr 10880  0cc0 10881  +∞cpnf 11016  *cxr 11018  cle 11020  [,]cicc 13092  1citg1 24789  2citg2 24790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-inf2 9386  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-of 7523  df-ofr 7524  df-om 7703  df-1st 7820  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-2o 8285  df-er 8485  df-map 8604  df-pm 8605  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-sup 9188  df-inf 9189  df-oi 9256  df-dju 9669  df-card 9707  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643  df-nn 11984  df-2 12046  df-3 12047  df-n0 12244  df-z 12330  df-uz 12593  df-q 12699  df-rp 12741  df-xadd 12859  df-ioo 13093  df-ico 13095  df-icc 13096  df-fz 13250  df-fzo 13393  df-fl 13522  df-seq 13732  df-exp 13793  df-hash 14055  df-cj 14820  df-re 14821  df-im 14822  df-sqrt 14956  df-abs 14957  df-clim 15207  df-sum 15408  df-xmet 20600  df-met 20601  df-ovol 24638  df-vol 24639  df-mbf 24793  df-itg1 24794  df-itg2 24795
This theorem is referenced by:  itg2lecl  24913  itg2const2  24916  itg2seq  24917  itg2monolem2  24926  itg2monolem3  24927  itg2gt0  24935
  Copyright terms: Public domain W3C validator