| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg2ge0 | Structured version Visualization version GIF version | ||
| Description: The integral of a nonnegative real function is greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| itg2ge0 | ⊢ (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg10 25622 | . 2 ⊢ (∫1‘(ℝ × {0})) = 0 | |
| 2 | ffvelcdm 7020 | . . . . . 6 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ (0[,]+∞)) | |
| 3 | 0xr 11165 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 4 | pnfxr 11172 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
| 5 | elicc1 13295 | . . . . . . . 8 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐹‘𝑦) ∈ (0[,]+∞) ↔ ((𝐹‘𝑦) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑦) ∧ (𝐹‘𝑦) ≤ +∞))) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . . . . 7 ⊢ ((𝐹‘𝑦) ∈ (0[,]+∞) ↔ ((𝐹‘𝑦) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑦) ∧ (𝐹‘𝑦) ≤ +∞)) |
| 7 | 6 | simp2bi 1146 | . . . . . 6 ⊢ ((𝐹‘𝑦) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝑦)) |
| 8 | 2, 7 | syl 17 | . . . . 5 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → 0 ≤ (𝐹‘𝑦)) |
| 9 | 8 | ralrimiva 3124 | . . . 4 ⊢ (𝐹:ℝ⟶(0[,]+∞) → ∀𝑦 ∈ ℝ 0 ≤ (𝐹‘𝑦)) |
| 10 | 0re 11120 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 11 | fnconstg 6717 | . . . . . 6 ⊢ (0 ∈ ℝ → (ℝ × {0}) Fn ℝ) | |
| 12 | 10, 11 | mp1i 13 | . . . . 5 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (ℝ × {0}) Fn ℝ) |
| 13 | ffn 6657 | . . . . 5 ⊢ (𝐹:ℝ⟶(0[,]+∞) → 𝐹 Fn ℝ) | |
| 14 | reex 11103 | . . . . . 6 ⊢ ℝ ∈ V | |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (𝐹:ℝ⟶(0[,]+∞) → ℝ ∈ V) |
| 16 | inidm 4176 | . . . . 5 ⊢ (ℝ ∩ ℝ) = ℝ | |
| 17 | c0ex 11112 | . . . . . . 7 ⊢ 0 ∈ V | |
| 18 | 17 | fvconst2 7144 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → ((ℝ × {0})‘𝑦) = 0) |
| 19 | 18 | adantl 481 | . . . . 5 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → ((ℝ × {0})‘𝑦) = 0) |
| 20 | eqidd 2732 | . . . . 5 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) = (𝐹‘𝑦)) | |
| 21 | 12, 13, 15, 15, 16, 19, 20 | ofrfval 7626 | . . . 4 ⊢ (𝐹:ℝ⟶(0[,]+∞) → ((ℝ × {0}) ∘r ≤ 𝐹 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹‘𝑦))) |
| 22 | 9, 21 | mpbird 257 | . . 3 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (ℝ × {0}) ∘r ≤ 𝐹) |
| 23 | i1f0 25621 | . . . 4 ⊢ (ℝ × {0}) ∈ dom ∫1 | |
| 24 | itg2ub 25667 | . . . 4 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (ℝ × {0}) ∈ dom ∫1 ∧ (ℝ × {0}) ∘r ≤ 𝐹) → (∫1‘(ℝ × {0})) ≤ (∫2‘𝐹)) | |
| 25 | 23, 24 | mp3an2 1451 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (ℝ × {0}) ∘r ≤ 𝐹) → (∫1‘(ℝ × {0})) ≤ (∫2‘𝐹)) |
| 26 | 22, 25 | mpdan 687 | . 2 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫1‘(ℝ × {0})) ≤ (∫2‘𝐹)) |
| 27 | 1, 26 | eqbrtrrid 5129 | 1 ⊢ (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 {csn 4575 class class class wbr 5093 × cxp 5617 dom cdm 5619 Fn wfn 6482 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 ∘r cofr 7615 ℝcr 11011 0cc0 11012 +∞cpnf 11149 ℝ*cxr 11151 ≤ cle 11153 [,]cicc 13254 ∫1citg1 25549 ∫2citg2 25550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9800 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-n0 12388 df-z 12475 df-uz 12739 df-q 12853 df-rp 12897 df-xadd 13018 df-ioo 13255 df-ico 13257 df-icc 13258 df-fz 13414 df-fzo 13561 df-fl 13702 df-seq 13915 df-exp 13975 df-hash 14244 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 df-clim 15401 df-sum 15600 df-xmet 21290 df-met 21291 df-ovol 25398 df-vol 25399 df-mbf 25553 df-itg1 25554 df-itg2 25555 |
| This theorem is referenced by: itg2lecl 25672 itg2const2 25675 itg2seq 25676 itg2monolem2 25685 itg2monolem3 25686 itg2gt0 25694 |
| Copyright terms: Public domain | W3C validator |