MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2ge0 Structured version   Visualization version   GIF version

Theorem itg2ge0 25785
Description: The integral of a nonnegative real function is greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itg2ge0 (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2𝐹))

Proof of Theorem itg2ge0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itg10 25737 . 2 (∫1‘(ℝ × {0})) = 0
2 ffvelcdm 7101 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,]+∞))
3 0xr 11306 . . . . . . . 8 0 ∈ ℝ*
4 pnfxr 11313 . . . . . . . 8 +∞ ∈ ℝ*
5 elicc1 13428 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐹𝑦) ∈ (0[,]+∞) ↔ ((𝐹𝑦) ∈ ℝ* ∧ 0 ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ +∞)))
63, 4, 5mp2an 692 . . . . . . 7 ((𝐹𝑦) ∈ (0[,]+∞) ↔ ((𝐹𝑦) ∈ ℝ* ∧ 0 ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ +∞))
76simp2bi 1145 . . . . . 6 ((𝐹𝑦) ∈ (0[,]+∞) → 0 ≤ (𝐹𝑦))
82, 7syl 17 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → 0 ≤ (𝐹𝑦))
98ralrimiva 3144 . . . 4 (𝐹:ℝ⟶(0[,]+∞) → ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦))
10 0re 11261 . . . . . 6 0 ∈ ℝ
11 fnconstg 6797 . . . . . 6 (0 ∈ ℝ → (ℝ × {0}) Fn ℝ)
1210, 11mp1i 13 . . . . 5 (𝐹:ℝ⟶(0[,]+∞) → (ℝ × {0}) Fn ℝ)
13 ffn 6737 . . . . 5 (𝐹:ℝ⟶(0[,]+∞) → 𝐹 Fn ℝ)
14 reex 11244 . . . . . 6 ℝ ∈ V
1514a1i 11 . . . . 5 (𝐹:ℝ⟶(0[,]+∞) → ℝ ∈ V)
16 inidm 4235 . . . . 5 (ℝ ∩ ℝ) = ℝ
17 c0ex 11253 . . . . . . 7 0 ∈ V
1817fvconst2 7224 . . . . . 6 (𝑦 ∈ ℝ → ((ℝ × {0})‘𝑦) = 0)
1918adantl 481 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → ((ℝ × {0})‘𝑦) = 0)
20 eqidd 2736 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
2112, 13, 15, 15, 16, 19, 20ofrfval 7707 . . . 4 (𝐹:ℝ⟶(0[,]+∞) → ((ℝ × {0}) ∘r𝐹 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦)))
229, 21mpbird 257 . . 3 (𝐹:ℝ⟶(0[,]+∞) → (ℝ × {0}) ∘r𝐹)
23 i1f0 25736 . . . 4 (ℝ × {0}) ∈ dom ∫1
24 itg2ub 25783 . . . 4 ((𝐹:ℝ⟶(0[,]+∞) ∧ (ℝ × {0}) ∈ dom ∫1 ∧ (ℝ × {0}) ∘r𝐹) → (∫1‘(ℝ × {0})) ≤ (∫2𝐹))
2523, 24mp3an2 1448 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ (ℝ × {0}) ∘r𝐹) → (∫1‘(ℝ × {0})) ≤ (∫2𝐹))
2622, 25mpdan 687 . 2 (𝐹:ℝ⟶(0[,]+∞) → (∫1‘(ℝ × {0})) ≤ (∫2𝐹))
271, 26eqbrtrrid 5184 1 (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  {csn 4631   class class class wbr 5148   × cxp 5687  dom cdm 5689   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  r cofr 7696  cr 11152  0cc0 11153  +∞cpnf 11290  *cxr 11292  cle 11294  [,]cicc 13387  1citg1 25664  2citg2 25665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xadd 13153  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-xmet 21375  df-met 21376  df-ovol 25513  df-vol 25514  df-mbf 25668  df-itg1 25669  df-itg2 25670
This theorem is referenced by:  itg2lecl  25788  itg2const2  25791  itg2seq  25792  itg2monolem2  25801  itg2monolem3  25802  itg2gt0  25810
  Copyright terms: Public domain W3C validator