MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2ge0 Structured version   Visualization version   GIF version

Theorem itg2ge0 24339
Description: The integral of a nonnegative real function is greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itg2ge0 (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2𝐹))

Proof of Theorem itg2ge0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itg10 24292 . 2 (∫1‘(ℝ × {0})) = 0
2 ffvelrn 6826 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,]+∞))
3 0xr 10677 . . . . . . . 8 0 ∈ ℝ*
4 pnfxr 10684 . . . . . . . 8 +∞ ∈ ℝ*
5 elicc1 12770 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐹𝑦) ∈ (0[,]+∞) ↔ ((𝐹𝑦) ∈ ℝ* ∧ 0 ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ +∞)))
63, 4, 5mp2an 691 . . . . . . 7 ((𝐹𝑦) ∈ (0[,]+∞) ↔ ((𝐹𝑦) ∈ ℝ* ∧ 0 ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ +∞))
76simp2bi 1143 . . . . . 6 ((𝐹𝑦) ∈ (0[,]+∞) → 0 ≤ (𝐹𝑦))
82, 7syl 17 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → 0 ≤ (𝐹𝑦))
98ralrimiva 3149 . . . 4 (𝐹:ℝ⟶(0[,]+∞) → ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦))
10 0re 10632 . . . . . 6 0 ∈ ℝ
11 fnconstg 6541 . . . . . 6 (0 ∈ ℝ → (ℝ × {0}) Fn ℝ)
1210, 11mp1i 13 . . . . 5 (𝐹:ℝ⟶(0[,]+∞) → (ℝ × {0}) Fn ℝ)
13 ffn 6487 . . . . 5 (𝐹:ℝ⟶(0[,]+∞) → 𝐹 Fn ℝ)
14 reex 10617 . . . . . 6 ℝ ∈ V
1514a1i 11 . . . . 5 (𝐹:ℝ⟶(0[,]+∞) → ℝ ∈ V)
16 inidm 4145 . . . . 5 (ℝ ∩ ℝ) = ℝ
17 c0ex 10624 . . . . . . 7 0 ∈ V
1817fvconst2 6943 . . . . . 6 (𝑦 ∈ ℝ → ((ℝ × {0})‘𝑦) = 0)
1918adantl 485 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → ((ℝ × {0})‘𝑦) = 0)
20 eqidd 2799 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
2112, 13, 15, 15, 16, 19, 20ofrfval 7397 . . . 4 (𝐹:ℝ⟶(0[,]+∞) → ((ℝ × {0}) ∘r𝐹 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦)))
229, 21mpbird 260 . . 3 (𝐹:ℝ⟶(0[,]+∞) → (ℝ × {0}) ∘r𝐹)
23 i1f0 24291 . . . 4 (ℝ × {0}) ∈ dom ∫1
24 itg2ub 24337 . . . 4 ((𝐹:ℝ⟶(0[,]+∞) ∧ (ℝ × {0}) ∈ dom ∫1 ∧ (ℝ × {0}) ∘r𝐹) → (∫1‘(ℝ × {0})) ≤ (∫2𝐹))
2523, 24mp3an2 1446 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ (ℝ × {0}) ∘r𝐹) → (∫1‘(ℝ × {0})) ≤ (∫2𝐹))
2622, 25mpdan 686 . 2 (𝐹:ℝ⟶(0[,]+∞) → (∫1‘(ℝ × {0})) ≤ (∫2𝐹))
271, 26eqbrtrrid 5066 1 (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  {csn 4525   class class class wbr 5030   × cxp 5517  dom cdm 5519   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  r cofr 7388  cr 10525  0cc0 10526  +∞cpnf 10661  *cxr 10663  cle 10665  [,]cicc 12729  1citg1 24219  2citg2 24220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xadd 12496  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-xmet 20084  df-met 20085  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225
This theorem is referenced by:  itg2lecl  24342  itg2const2  24345  itg2seq  24346  itg2monolem2  24355  itg2monolem3  24356  itg2gt0  24364
  Copyright terms: Public domain W3C validator