MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrval2 Structured version   Visualization version   GIF version

Theorem opsrval2 22091
Description: Self-referential expression for the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
opsrval2.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrval2.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsrval2.l = (le‘𝑂)
opsrval2.i (𝜑𝐼𝑉)
opsrval2.r (𝜑𝑅𝑊)
opsrval2.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
Assertion
Ref Expression
opsrval2 (𝜑𝑂 = (𝑆 sSet ⟨(le‘ndx), ⟩))

Proof of Theorem opsrval2
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opsrval2.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 opsrval2.o . . 3 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
3 eqid 2740 . . 3 (Base‘𝑆) = (Base‘𝑆)
4 eqid 2740 . . 3 (lt‘𝑅) = (lt‘𝑅)
5 eqid 2740 . . 3 (𝑇 <bag 𝐼) = (𝑇 <bag 𝐼)
6 eqid 2740 . . 3 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 eqid 2740 . . 3 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}
8 opsrval2.i . . 3 (𝜑𝐼𝑉)
9 opsrval2.r . . 3 (𝜑𝑅𝑊)
10 opsrval2.t . . 3 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10opsrval 22089 . 2 (𝜑𝑂 = (𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩))
12 opsrval2.l . . . . 5 = (le‘𝑂)
131, 2, 3, 4, 5, 6, 12, 10opsrle 22090 . . . 4 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))})
1413opeq2d 4904 . . 3 (𝜑 → ⟨(le‘ndx), ⟩ = ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)
1514oveq2d 7466 . 2 (𝜑 → (𝑆 sSet ⟨(le‘ndx), ⟩) = (𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩))
1611, 15eqtr4d 2783 1 (𝜑𝑂 = (𝑆 sSet ⟨(le‘ndx), ⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  wss 3976  {cpr 4650  cop 4654   class class class wbr 5166  {copab 5228   × cxp 5698  ccnv 5699  cima 5703  cfv 6575  (class class class)co 7450  m cmap 8886  Fincfn 9005  cn 12295  0cn0 12555   sSet csts 17212  ndxcnx 17242  Basecbs 17260  lecple 17320  ltcplt 18380   mPwSer cmps 21949   <bag cltb 21952   ordPwSer copws 21953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-pnf 11328  df-mnf 11329  df-ltxr 11331  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-7 12363  df-8 12364  df-9 12365  df-dec 12761  df-sets 17213  df-slot 17231  df-ndx 17243  df-base 17261  df-ple 17333  df-psr 21954  df-opsr 21958
This theorem is referenced by:  opsrbaslem  22092  opsrbaslemOLD  22093
  Copyright terms: Public domain W3C validator