MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrval2 Structured version   Visualization version   GIF version

Theorem opsrval2 21260
Description: Self-referential expression for the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
opsrval2.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrval2.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsrval2.l = (le‘𝑂)
opsrval2.i (𝜑𝐼𝑉)
opsrval2.r (𝜑𝑅𝑊)
opsrval2.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
Assertion
Ref Expression
opsrval2 (𝜑𝑂 = (𝑆 sSet ⟨(le‘ndx), ⟩))

Proof of Theorem opsrval2
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opsrval2.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 opsrval2.o . . 3 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
3 eqid 2740 . . 3 (Base‘𝑆) = (Base‘𝑆)
4 eqid 2740 . . 3 (lt‘𝑅) = (lt‘𝑅)
5 eqid 2740 . . 3 (𝑇 <bag 𝐼) = (𝑇 <bag 𝐼)
6 eqid 2740 . . 3 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 eqid 2740 . . 3 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}
8 opsrval2.i . . 3 (𝜑𝐼𝑉)
9 opsrval2.r . . 3 (𝜑𝑅𝑊)
10 opsrval2.t . . 3 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10opsrval 21258 . 2 (𝜑𝑂 = (𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩))
12 opsrval2.l . . . . 5 = (le‘𝑂)
131, 2, 3, 4, 5, 6, 12, 10opsrle 21259 . . . 4 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))})
1413opeq2d 4817 . . 3 (𝜑 → ⟨(le‘ndx), ⟩ = ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)
1514oveq2d 7288 . 2 (𝜑 → (𝑆 sSet ⟨(le‘ndx), ⟩) = (𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩))
1611, 15eqtr4d 2783 1 (𝜑𝑂 = (𝑆 sSet ⟨(le‘ndx), ⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1542  wcel 2110  wral 3066  wrex 3067  {crab 3070  wss 3892  {cpr 4569  cop 4573   class class class wbr 5079  {copab 5141   × cxp 5588  ccnv 5589  cima 5593  cfv 6432  (class class class)co 7272  m cmap 8607  Fincfn 8725  cn 11984  0cn0 12244   sSet csts 16875  ndxcnx 16905  Basecbs 16923  lecple 16980  ltcplt 18037   mPwSer cmps 21118   <bag cltb 21121   ordPwSer copws 21122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-pnf 11022  df-mnf 11023  df-ltxr 11025  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-7 12052  df-8 12053  df-9 12054  df-dec 12449  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-ple 16993  df-psr 21123  df-opsr 21127
This theorem is referenced by:  opsrbaslem  21261  opsrbaslemOLD  21262
  Copyright terms: Public domain W3C validator