| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opsrval2 | Structured version Visualization version GIF version | ||
| Description: Self-referential expression for the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| opsrval2.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| opsrval2.o | ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
| opsrval2.l | ⊢ ≤ = (le‘𝑂) |
| opsrval2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| opsrval2.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| opsrval2.t | ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
| Ref | Expression |
|---|---|
| opsrval2 | ⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), ≤ 〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrval2.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 2 | opsrval2.o | . . 3 ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) | |
| 3 | eqid 2733 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 4 | eqid 2733 | . . 3 ⊢ (lt‘𝑅) = (lt‘𝑅) | |
| 5 | eqid 2733 | . . 3 ⊢ (𝑇 <bag 𝐼) = (𝑇 <bag 𝐼) | |
| 6 | eqid 2733 | . . 3 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 7 | eqid 2733 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} | |
| 8 | opsrval2.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 9 | opsrval2.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
| 10 | opsrval2.t | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | opsrval 21991 | . 2 ⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) |
| 12 | opsrval2.l | . . . . 5 ⊢ ≤ = (le‘𝑂) | |
| 13 | 1, 2, 3, 4, 5, 6, 12, 10 | opsrle 21992 | . . . 4 ⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}) |
| 14 | 13 | opeq2d 4833 | . . 3 ⊢ (𝜑 → 〈(le‘ndx), ≤ 〉 = 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉) |
| 15 | 14 | oveq2d 7371 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈(le‘ndx), ≤ 〉) = (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) |
| 16 | 11, 15 | eqtr4d 2771 | 1 ⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), ≤ 〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ∃wrex 3058 {crab 3397 ⊆ wss 3899 {cpr 4579 〈cop 4583 class class class wbr 5095 {copab 5157 × cxp 5619 ◡ccnv 5620 “ cima 5624 ‘cfv 6489 (class class class)co 7355 ↑m cmap 8759 Fincfn 8878 ℕcn 12135 ℕ0cn0 12391 sSet csts 17084 ndxcnx 17114 Basecbs 17130 lecple 17178 ltcplt 18224 mPwSer cmps 21851 <bag cltb 21854 ordPwSer copws 21855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-ltxr 11161 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-dec 12599 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ple 17191 df-psr 21856 df-opsr 21860 |
| This theorem is referenced by: opsrbaslem 21994 |
| Copyright terms: Public domain | W3C validator |