Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opsrval2 | Structured version Visualization version GIF version |
Description: Self-referential expression for the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
opsrval2.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
opsrval2.o | ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
opsrval2.l | ⊢ ≤ = (le‘𝑂) |
opsrval2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
opsrval2.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
opsrval2.t | ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
Ref | Expression |
---|---|
opsrval2 | ⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), ≤ 〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opsrval2.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
2 | opsrval2.o | . . 3 ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) | |
3 | eqid 2740 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
4 | eqid 2740 | . . 3 ⊢ (lt‘𝑅) = (lt‘𝑅) | |
5 | eqid 2740 | . . 3 ⊢ (𝑇 <bag 𝐼) = (𝑇 <bag 𝐼) | |
6 | eqid 2740 | . . 3 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
7 | eqid 2740 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} | |
8 | opsrval2.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
9 | opsrval2.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
10 | opsrval2.t | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | opsrval 21258 | . 2 ⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) |
12 | opsrval2.l | . . . . 5 ⊢ ≤ = (le‘𝑂) | |
13 | 1, 2, 3, 4, 5, 6, 12, 10 | opsrle 21259 | . . . 4 ⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}) |
14 | 13 | opeq2d 4817 | . . 3 ⊢ (𝜑 → 〈(le‘ndx), ≤ 〉 = 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉) |
15 | 14 | oveq2d 7288 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈(le‘ndx), ≤ 〉) = (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) |
16 | 11, 15 | eqtr4d 2783 | 1 ⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), ≤ 〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ∃wrex 3067 {crab 3070 ⊆ wss 3892 {cpr 4569 〈cop 4573 class class class wbr 5079 {copab 5141 × cxp 5588 ◡ccnv 5589 “ cima 5593 ‘cfv 6432 (class class class)co 7272 ↑m cmap 8607 Fincfn 8725 ℕcn 11984 ℕ0cn0 12244 sSet csts 16875 ndxcnx 16905 Basecbs 16923 lecple 16980 ltcplt 18037 mPwSer cmps 21118 <bag cltb 21121 ordPwSer copws 21122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-om 7708 df-2nd 7826 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-er 8490 df-en 8726 df-dom 8727 df-sdom 8728 df-pnf 11022 df-mnf 11023 df-ltxr 11025 df-nn 11985 df-2 12047 df-3 12048 df-4 12049 df-5 12050 df-6 12051 df-7 12052 df-8 12053 df-9 12054 df-dec 12449 df-sets 16876 df-slot 16894 df-ndx 16906 df-base 16924 df-ple 16993 df-psr 21123 df-opsr 21127 |
This theorem is referenced by: opsrbaslem 21261 opsrbaslemOLD 21262 |
Copyright terms: Public domain | W3C validator |