| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opsrval2 | Structured version Visualization version GIF version | ||
| Description: Self-referential expression for the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| opsrval2.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| opsrval2.o | ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
| opsrval2.l | ⊢ ≤ = (le‘𝑂) |
| opsrval2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| opsrval2.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| opsrval2.t | ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
| Ref | Expression |
|---|---|
| opsrval2 | ⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), ≤ 〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrval2.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 2 | opsrval2.o | . . 3 ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) | |
| 3 | eqid 2730 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 4 | eqid 2730 | . . 3 ⊢ (lt‘𝑅) = (lt‘𝑅) | |
| 5 | eqid 2730 | . . 3 ⊢ (𝑇 <bag 𝐼) = (𝑇 <bag 𝐼) | |
| 6 | eqid 2730 | . . 3 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 7 | eqid 2730 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} | |
| 8 | opsrval2.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 9 | opsrval2.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
| 10 | opsrval2.t | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | opsrval 21960 | . 2 ⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) |
| 12 | opsrval2.l | . . . . 5 ⊢ ≤ = (le‘𝑂) | |
| 13 | 1, 2, 3, 4, 5, 6, 12, 10 | opsrle 21961 | . . . 4 ⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}) |
| 14 | 13 | opeq2d 4847 | . . 3 ⊢ (𝜑 → 〈(le‘ndx), ≤ 〉 = 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉) |
| 15 | 14 | oveq2d 7406 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈(le‘ndx), ≤ 〉) = (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) |
| 16 | 11, 15 | eqtr4d 2768 | 1 ⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), ≤ 〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 {crab 3408 ⊆ wss 3917 {cpr 4594 〈cop 4598 class class class wbr 5110 {copab 5172 × cxp 5639 ◡ccnv 5640 “ cima 5644 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 Fincfn 8921 ℕcn 12193 ℕ0cn0 12449 sSet csts 17140 ndxcnx 17170 Basecbs 17186 lecple 17234 ltcplt 18276 mPwSer cmps 21820 <bag cltb 21823 ordPwSer copws 21824 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-dec 12657 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ple 17247 df-psr 21825 df-opsr 21829 |
| This theorem is referenced by: opsrbaslem 21963 |
| Copyright terms: Public domain | W3C validator |