MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrval2 Structured version   Visualization version   GIF version

Theorem opsrval2 21249
Description: Self-referential expression for the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
opsrval2.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrval2.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsrval2.l = (le‘𝑂)
opsrval2.i (𝜑𝐼𝑉)
opsrval2.r (𝜑𝑅𝑊)
opsrval2.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
Assertion
Ref Expression
opsrval2 (𝜑𝑂 = (𝑆 sSet ⟨(le‘ndx), ⟩))

Proof of Theorem opsrval2
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opsrval2.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 opsrval2.o . . 3 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
3 eqid 2738 . . 3 (Base‘𝑆) = (Base‘𝑆)
4 eqid 2738 . . 3 (lt‘𝑅) = (lt‘𝑅)
5 eqid 2738 . . 3 (𝑇 <bag 𝐼) = (𝑇 <bag 𝐼)
6 eqid 2738 . . 3 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 eqid 2738 . . 3 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}
8 opsrval2.i . . 3 (𝜑𝐼𝑉)
9 opsrval2.r . . 3 (𝜑𝑅𝑊)
10 opsrval2.t . . 3 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10opsrval 21247 . 2 (𝜑𝑂 = (𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩))
12 opsrval2.l . . . . 5 = (le‘𝑂)
131, 2, 3, 4, 5, 6, 12, 10opsrle 21248 . . . 4 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))})
1413opeq2d 4811 . . 3 (𝜑 → ⟨(le‘ndx), ⟩ = ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)
1514oveq2d 7291 . 2 (𝜑 → (𝑆 sSet ⟨(le‘ndx), ⟩) = (𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩))
1611, 15eqtr4d 2781 1 (𝜑𝑂 = (𝑆 sSet ⟨(le‘ndx), ⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  wss 3887  {cpr 4563  cop 4567   class class class wbr 5074  {copab 5136   × cxp 5587  ccnv 5588  cima 5592  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  cn 11973  0cn0 12233   sSet csts 16864  ndxcnx 16894  Basecbs 16912  lecple 16969  ltcplt 18026   mPwSer cmps 21107   <bag cltb 21110   ordPwSer copws 21111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-dec 12438  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ple 16982  df-psr 21112  df-opsr 21116
This theorem is referenced by:  opsrbaslem  21250  opsrbaslemOLD  21251
  Copyright terms: Public domain W3C validator