MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrval2 Structured version   Visualization version   GIF version

Theorem opsrval2 21980
Description: Self-referential expression for the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
opsrval2.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrval2.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsrval2.l = (le‘𝑂)
opsrval2.i (𝜑𝐼𝑉)
opsrval2.r (𝜑𝑅𝑊)
opsrval2.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
Assertion
Ref Expression
opsrval2 (𝜑𝑂 = (𝑆 sSet ⟨(le‘ndx), ⟩))

Proof of Theorem opsrval2
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opsrval2.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 opsrval2.o . . 3 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
3 eqid 2728 . . 3 (Base‘𝑆) = (Base‘𝑆)
4 eqid 2728 . . 3 (lt‘𝑅) = (lt‘𝑅)
5 eqid 2728 . . 3 (𝑇 <bag 𝐼) = (𝑇 <bag 𝐼)
6 eqid 2728 . . 3 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 eqid 2728 . . 3 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}
8 opsrval2.i . . 3 (𝜑𝐼𝑉)
9 opsrval2.r . . 3 (𝜑𝑅𝑊)
10 opsrval2.t . . 3 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10opsrval 21978 . 2 (𝜑𝑂 = (𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩))
12 opsrval2.l . . . . 5 = (le‘𝑂)
131, 2, 3, 4, 5, 6, 12, 10opsrle 21979 . . . 4 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))})
1413opeq2d 4877 . . 3 (𝜑 → ⟨(le‘ndx), ⟩ = ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)
1514oveq2d 7431 . 2 (𝜑 → (𝑆 sSet ⟨(le‘ndx), ⟩) = (𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ((𝑥𝑧)(lt‘𝑅)(𝑦𝑧) ∧ ∀𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩))
1611, 15eqtr4d 2771 1 (𝜑𝑂 = (𝑆 sSet ⟨(le‘ndx), ⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1534  wcel 2099  wral 3057  wrex 3066  {crab 3428  wss 3945  {cpr 4627  cop 4631   class class class wbr 5143  {copab 5205   × cxp 5671  ccnv 5672  cima 5676  cfv 6543  (class class class)co 7415  m cmap 8839  Fincfn 8958  cn 12237  0cn0 12497   sSet csts 17126  ndxcnx 17156  Basecbs 17174  lecple 17234  ltcplt 18294   mPwSer cmps 21831   <bag cltb 21834   ordPwSer copws 21835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-pnf 11275  df-mnf 11276  df-ltxr 11278  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-dec 12703  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ple 17247  df-psr 21836  df-opsr 21840
This theorem is referenced by:  opsrbaslem  21981  opsrbaslemOLD  21982
  Copyright terms: Public domain W3C validator