Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnn0val Structured version   Visualization version   GIF version

Theorem ovnn0val 45565
Description: The value of a (multidimensional) Lebesgue outer measure, defined on a nonzero-dimensional space of reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnn0val.1 (𝜑𝑋 ∈ Fin)
ovnn0val.2 (𝜑𝑋 ≠ ∅)
ovnn0val.3 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
ovnn0val.4 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
Assertion
Ref Expression
ovnn0val (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < ))
Distinct variable groups:   𝐴,𝑖,𝑧   𝑖,𝑋,𝑗,𝑘,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑖,𝑗,𝑘)   𝐴(𝑗,𝑘)   𝑀(𝑧,𝑖,𝑗,𝑘)

Proof of Theorem ovnn0val
StepHypRef Expression
1 ovnn0val.1 . . 3 (𝜑𝑋 ∈ Fin)
2 ovnn0val.3 . . 3 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
3 ovnn0val.4 . . 3 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
41, 2, 3ovnval2 45559 . 2 (𝜑 → ((voln*‘𝑋)‘𝐴) = if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )))
5 ovnn0val.2 . . . 4 (𝜑𝑋 ≠ ∅)
65neneqd 2943 . . 3 (𝜑 → ¬ 𝑋 = ∅)
76iffalsed 4538 . 2 (𝜑 → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, < ))
84, 7eqtrd 2770 1 (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  wne 2938  wrex 3068  {crab 3430  wss 3947  c0 4321  ifcif 4527   ciun 4996  cmpt 5230   × cxp 5673  ccom 5679  cfv 6542  (class class class)co 7411  m cmap 8822  Xcixp 8893  Fincfn 8941  infcinf 9438  cr 11111  0cc0 11112  *cxr 11251   < clt 11252  cn 12216  [,)cico 13330  cprod 15853  volcvol 25212  Σ^csumge0 45376  voln*covoln 45550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-mulcl 11174  ax-i2m1 11180  ax-pre-lttri 11186  ax-pre-lttrn 11187
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-seq 13971  df-prod 15854  df-ovoln 45551
This theorem is referenced by:  ovnlecvr  45572  ovnsslelem  45574  ovnlerp  45576  ovnhoilem2  45616  ovnlecvr2  45624
  Copyright terms: Public domain W3C validator