| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnn0val | Structured version Visualization version GIF version | ||
| Description: The value of a (multidimensional) Lebesgue outer measure, defined on a nonzero-dimensional space of reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| ovnn0val.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| ovnn0val.2 | ⊢ (𝜑 → 𝑋 ≠ ∅) |
| ovnn0val.3 | ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) |
| ovnn0val.4 | ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} |
| Ref | Expression |
|---|---|
| ovnn0val | ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovnn0val.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 2 | ovnn0val.3 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) | |
| 3 | ovnn0val.4 | . . 3 ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
| 4 | 1, 2, 3 | ovnval2 46560 | . 2 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < ))) |
| 5 | ovnn0val.2 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
| 6 | 5 | neneqd 2945 | . . 3 ⊢ (𝜑 → ¬ 𝑋 = ∅) |
| 7 | 6 | iffalsed 4536 | . 2 ⊢ (𝜑 → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, < )) |
| 8 | 4, 7 | eqtrd 2777 | 1 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 {crab 3436 ⊆ wss 3951 ∅c0 4333 ifcif 4525 ∪ ciun 4991 ↦ cmpt 5225 × cxp 5683 ∘ ccom 5689 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 Xcixp 8937 Fincfn 8985 infcinf 9481 ℝcr 11154 0cc0 11155 ℝ*cxr 11294 < clt 11295 ℕcn 12266 [,)cico 13389 ∏cprod 15939 volcvol 25498 Σ^csumge0 46377 voln*covoln 46551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-mulcl 11217 ax-i2m1 11223 ax-pre-lttri 11229 ax-pre-lttrn 11230 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-seq 14043 df-prod 15940 df-ovoln 46552 |
| This theorem is referenced by: ovnlecvr 46573 ovnsslelem 46575 ovnlerp 46577 ovnhoilem2 46617 ovnlecvr2 46625 |
| Copyright terms: Public domain | W3C validator |