Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnn0val Structured version   Visualization version   GIF version

Theorem ovnn0val 46472
Description: The value of a (multidimensional) Lebesgue outer measure, defined on a nonzero-dimensional space of reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnn0val.1 (𝜑𝑋 ∈ Fin)
ovnn0val.2 (𝜑𝑋 ≠ ∅)
ovnn0val.3 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
ovnn0val.4 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
Assertion
Ref Expression
ovnn0val (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < ))
Distinct variable groups:   𝐴,𝑖,𝑧   𝑖,𝑋,𝑗,𝑘,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑖,𝑗,𝑘)   𝐴(𝑗,𝑘)   𝑀(𝑧,𝑖,𝑗,𝑘)

Proof of Theorem ovnn0val
StepHypRef Expression
1 ovnn0val.1 . . 3 (𝜑𝑋 ∈ Fin)
2 ovnn0val.3 . . 3 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
3 ovnn0val.4 . . 3 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
41, 2, 3ovnval2 46466 . 2 (𝜑 → ((voln*‘𝑋)‘𝐴) = if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )))
5 ovnn0val.2 . . . 4 (𝜑𝑋 ≠ ∅)
65neneqd 2951 . . 3 (𝜑 → ¬ 𝑋 = ∅)
76iffalsed 4559 . 2 (𝜑 → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, < ))
84, 7eqtrd 2780 1 (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  {crab 3443  wss 3976  c0 4352  ifcif 4548   ciun 5015  cmpt 5249   × cxp 5698  ccom 5704  cfv 6573  (class class class)co 7448  m cmap 8884  Xcixp 8955  Fincfn 9003  infcinf 9510  cr 11183  0cc0 11184  *cxr 11323   < clt 11324  cn 12293  [,)cico 13409  cprod 15951  volcvol 25517  Σ^csumge0 46283  voln*covoln 46457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-mulcl 11246  ax-i2m1 11252  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-seq 14053  df-prod 15952  df-ovoln 46458
This theorem is referenced by:  ovnlecvr  46479  ovnsslelem  46481  ovnlerp  46483  ovnhoilem2  46523  ovnlecvr2  46531
  Copyright terms: Public domain W3C validator