![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnn0val | Structured version Visualization version GIF version |
Description: The value of a (multidimensional) Lebesgue outer measure, defined on a nonzero-dimensional space of reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
ovnn0val.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
ovnn0val.2 | ⊢ (𝜑 → 𝑋 ≠ ∅) |
ovnn0val.3 | ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) |
ovnn0val.4 | ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} |
Ref | Expression |
---|---|
ovnn0val | ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovnn0val.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
2 | ovnn0val.3 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) | |
3 | ovnn0val.4 | . . 3 ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
4 | 1, 2, 3 | ovnval2 45559 | . 2 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < ))) |
5 | ovnn0val.2 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
6 | 5 | neneqd 2943 | . . 3 ⊢ (𝜑 → ¬ 𝑋 = ∅) |
7 | 6 | iffalsed 4538 | . 2 ⊢ (𝜑 → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, < )) |
8 | 4, 7 | eqtrd 2770 | 1 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 ∃wrex 3068 {crab 3430 ⊆ wss 3947 ∅c0 4321 ifcif 4527 ∪ ciun 4996 ↦ cmpt 5230 × cxp 5673 ∘ ccom 5679 ‘cfv 6542 (class class class)co 7411 ↑m cmap 8822 Xcixp 8893 Fincfn 8941 infcinf 9438 ℝcr 11111 0cc0 11112 ℝ*cxr 11251 < clt 11252 ℕcn 12216 [,)cico 13330 ∏cprod 15853 volcvol 25212 Σ^csumge0 45376 voln*covoln 45550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-mulcl 11174 ax-i2m1 11180 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-seq 13971 df-prod 15854 df-ovoln 45551 |
This theorem is referenced by: ovnlecvr 45572 ovnsslelem 45574 ovnlerp 45576 ovnhoilem2 45616 ovnlecvr2 45624 |
Copyright terms: Public domain | W3C validator |