| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnn0val | Structured version Visualization version GIF version | ||
| Description: The value of a (multidimensional) Lebesgue outer measure, defined on a nonzero-dimensional space of reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| ovnn0val.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| ovnn0val.2 | ⊢ (𝜑 → 𝑋 ≠ ∅) |
| ovnn0val.3 | ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) |
| ovnn0val.4 | ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} |
| Ref | Expression |
|---|---|
| ovnn0val | ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovnn0val.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 2 | ovnn0val.3 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) | |
| 3 | ovnn0val.4 | . . 3 ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
| 4 | 1, 2, 3 | ovnval2 46543 | . 2 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < ))) |
| 5 | ovnn0val.2 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
| 6 | 5 | neneqd 2930 | . . 3 ⊢ (𝜑 → ¬ 𝑋 = ∅) |
| 7 | 6 | iffalsed 4499 | . 2 ⊢ (𝜑 → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, < )) |
| 8 | 4, 7 | eqtrd 2764 | 1 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3405 ⊆ wss 3914 ∅c0 4296 ifcif 4488 ∪ ciun 4955 ↦ cmpt 5188 × cxp 5636 ∘ ccom 5642 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Xcixp 8870 Fincfn 8918 infcinf 9392 ℝcr 11067 0cc0 11068 ℝ*cxr 11207 < clt 11208 ℕcn 12186 [,)cico 13308 ∏cprod 15869 volcvol 25364 Σ^csumge0 46360 voln*covoln 46534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-seq 13967 df-prod 15870 df-ovoln 46535 |
| This theorem is referenced by: ovnlecvr 46556 ovnsslelem 46558 ovnlerp 46560 ovnhoilem2 46600 ovnlecvr2 46608 |
| Copyright terms: Public domain | W3C validator |