| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1bascl | Structured version Visualization version GIF version | ||
| Description: A univariate polynomial is a univariate power series. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| ply1bascl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1bascl.b | ⊢ 𝐵 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| ply1bascl | ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (Base‘(PwSer1‘𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1bascl.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 2 | ply1bascl.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
| 4 | 2, 3 | ply1val 22111 | . . . 4 ⊢ 𝑃 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
| 5 | eqid 2729 | . . . 4 ⊢ (Base‘(PwSer1‘𝑅)) = (Base‘(PwSer1‘𝑅)) | |
| 6 | 4, 5 | ressbasss 17185 | . . 3 ⊢ (Base‘𝑃) ⊆ (Base‘(PwSer1‘𝑅)) |
| 7 | 1, 6 | eqsstri 3990 | . 2 ⊢ 𝐵 ⊆ (Base‘(PwSer1‘𝑅)) |
| 8 | 7 | sseli 3939 | 1 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (Base‘(PwSer1‘𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 1oc1o 8404 Basecbs 17155 mPoly cmpl 21848 PwSer1cps1 22092 Poly1cpl1 22094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-1cn 11102 ax-addcl 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-ply1 22099 |
| This theorem is referenced by: coe1fval2 22128 coe1f 22129 ply1opprmul 22156 coe1mul 22189 |
| Copyright terms: Public domain | W3C validator |