![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1bascl | Structured version Visualization version GIF version |
Description: A univariate polynomial is a univariate power series. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
Ref | Expression |
---|---|
ply1bascl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1bascl.b | ⊢ 𝐵 = (Base‘𝑃) |
Ref | Expression |
---|---|
ply1bascl | ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (Base‘(PwSer1‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1bascl.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
2 | ply1bascl.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | eqid 2731 | . . . . 5 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
4 | 2, 3 | ply1val 21938 | . . . 4 ⊢ 𝑃 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
5 | eqid 2731 | . . . 4 ⊢ (Base‘(PwSer1‘𝑅)) = (Base‘(PwSer1‘𝑅)) | |
6 | 4, 5 | ressbasss 17188 | . . 3 ⊢ (Base‘𝑃) ⊆ (Base‘(PwSer1‘𝑅)) |
7 | 1, 6 | eqsstri 4017 | . 2 ⊢ 𝐵 ⊆ (Base‘(PwSer1‘𝑅)) |
8 | 7 | sseli 3979 | 1 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (Base‘(PwSer1‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6544 (class class class)co 7412 1oc1o 8462 Basecbs 17149 mPoly cmpl 21679 PwSer1cps1 21919 Poly1cpl1 21921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-1cn 11171 ax-addcl 11173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-nn 12218 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-ply1 21926 |
This theorem is referenced by: coe1fval2 21954 coe1f 21955 ply1opprmul 21982 coe1mul 22013 |
Copyright terms: Public domain | W3C validator |