![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1opprmul | Structured version Visualization version GIF version |
Description: Reversing multiplication in a ring reverses multiplication in the univariate polynomial ring. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
Ref | Expression |
---|---|
ply1opprmul.y | โข ๐ = (Poly1โ๐ ) |
ply1opprmul.s | โข ๐ = (opprโ๐ ) |
ply1opprmul.z | โข ๐ = (Poly1โ๐) |
ply1opprmul.t | โข ยท = (.rโ๐) |
ply1opprmul.u | โข โ = (.rโ๐) |
ply1opprmul.b | โข ๐ต = (Baseโ๐) |
Ref | Expression |
---|---|
ply1opprmul | โข ((๐ โ Ring โง ๐น โ ๐ต โง ๐บ โ ๐ต) โ (๐น โ ๐บ) = (๐บ ยท ๐น)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 โข (๐ โ Ring โ ๐ โ Ring) | |
2 | ply1opprmul.y | . . . 4 โข ๐ = (Poly1โ๐ ) | |
3 | ply1opprmul.b | . . . 4 โข ๐ต = (Baseโ๐) | |
4 | 2, 3 | ply1bascl 21590 | . . 3 โข (๐น โ ๐ต โ ๐น โ (Baseโ(PwSer1โ๐ ))) |
5 | eqid 2733 | . . . 4 โข (PwSer1โ๐ ) = (PwSer1โ๐ ) | |
6 | eqid 2733 | . . . 4 โข (Baseโ(PwSer1โ๐ )) = (Baseโ(PwSer1โ๐ )) | |
7 | 5, 6 | psr1bascl 21587 | . . 3 โข (๐น โ (Baseโ(PwSer1โ๐ )) โ ๐น โ (Baseโ(1o mPwSer ๐ ))) |
8 | 4, 7 | syl 17 | . 2 โข (๐น โ ๐ต โ ๐น โ (Baseโ(1o mPwSer ๐ ))) |
9 | 2, 3 | ply1bascl 21590 | . . 3 โข (๐บ โ ๐ต โ ๐บ โ (Baseโ(PwSer1โ๐ ))) |
10 | 5, 6 | psr1bascl 21587 | . . 3 โข (๐บ โ (Baseโ(PwSer1โ๐ )) โ ๐บ โ (Baseโ(1o mPwSer ๐ ))) |
11 | 9, 10 | syl 17 | . 2 โข (๐บ โ ๐ต โ ๐บ โ (Baseโ(1o mPwSer ๐ ))) |
12 | eqid 2733 | . . 3 โข (1o mPwSer ๐ ) = (1o mPwSer ๐ ) | |
13 | ply1opprmul.s | . . 3 โข ๐ = (opprโ๐ ) | |
14 | eqid 2733 | . . 3 โข (1o mPwSer ๐) = (1o mPwSer ๐) | |
15 | eqid 2733 | . . . 4 โข (1o mPoly ๐ ) = (1o mPoly ๐ ) | |
16 | ply1opprmul.t | . . . . 5 โข ยท = (.rโ๐) | |
17 | 2, 15, 16 | ply1mulr 21614 | . . . 4 โข ยท = (.rโ(1o mPoly ๐ )) |
18 | 15, 12, 17 | mplmulr 21608 | . . 3 โข ยท = (.rโ(1o mPwSer ๐ )) |
19 | eqid 2733 | . . . 4 โข (1o mPoly ๐) = (1o mPoly ๐) | |
20 | ply1opprmul.z | . . . . 5 โข ๐ = (Poly1โ๐) | |
21 | ply1opprmul.u | . . . . 5 โข โ = (.rโ๐) | |
22 | 20, 19, 21 | ply1mulr 21614 | . . . 4 โข โ = (.rโ(1o mPoly ๐)) |
23 | 19, 14, 22 | mplmulr 21608 | . . 3 โข โ = (.rโ(1o mPwSer ๐)) |
24 | eqid 2733 | . . 3 โข (Baseโ(1o mPwSer ๐ )) = (Baseโ(1o mPwSer ๐ )) | |
25 | 12, 13, 14, 18, 23, 24 | psropprmul 21625 | . 2 โข ((๐ โ Ring โง ๐น โ (Baseโ(1o mPwSer ๐ )) โง ๐บ โ (Baseโ(1o mPwSer ๐ ))) โ (๐น โ ๐บ) = (๐บ ยท ๐น)) |
26 | 1, 8, 11, 25 | syl3an 1161 | 1 โข ((๐ โ Ring โง ๐น โ ๐ต โง ๐บ โ ๐ต) โ (๐น โ ๐บ) = (๐บ ยท ๐น)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง w3a 1088 = wceq 1542 โ wcel 2107 โcfv 6497 (class class class)co 7358 1oc1o 8406 Basecbs 17088 .rcmulr 17139 Ringcrg 19969 opprcoppr 20053 mPwSer cmps 21322 mPoly cmpl 21324 PwSer1cps1 21562 Poly1cpl1 21564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-of 7618 df-ofr 7619 df-om 7804 df-1st 7922 df-2nd 7923 df-supp 8094 df-tpos 8158 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-map 8770 df-pm 8771 df-ixp 8839 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-fsupp 9309 df-oi 9451 df-card 9880 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-2 12221 df-3 12222 df-4 12223 df-5 12224 df-6 12225 df-7 12226 df-8 12227 df-9 12228 df-n0 12419 df-z 12505 df-dec 12624 df-uz 12769 df-fz 13431 df-fzo 13574 df-seq 13913 df-hash 14237 df-struct 17024 df-sets 17041 df-slot 17059 df-ndx 17071 df-base 17089 df-ress 17118 df-plusg 17151 df-mulr 17152 df-sca 17154 df-vsca 17155 df-tset 17157 df-ple 17158 df-0g 17328 df-gsum 17329 df-mgm 18502 df-sgrp 18551 df-mnd 18562 df-grp 18756 df-minusg 18757 df-cntz 19102 df-cmn 19569 df-abl 19570 df-mgp 19902 df-ur 19919 df-ring 19971 df-oppr 20054 df-psr 21327 df-mpl 21329 df-opsr 21331 df-psr1 21567 df-ply1 21569 |
This theorem is referenced by: ply1divalg2 25519 |
Copyright terms: Public domain | W3C validator |