Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply1opprmul | Structured version Visualization version GIF version |
Description: Reversing multiplication in a ring reverses multiplication in the univariate polynomial ring. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
Ref | Expression |
---|---|
ply1opprmul.y | ⊢ 𝑌 = (Poly1‘𝑅) |
ply1opprmul.s | ⊢ 𝑆 = (oppr‘𝑅) |
ply1opprmul.z | ⊢ 𝑍 = (Poly1‘𝑆) |
ply1opprmul.t | ⊢ · = (.r‘𝑌) |
ply1opprmul.u | ⊢ ∙ = (.r‘𝑍) |
ply1opprmul.b | ⊢ 𝐵 = (Base‘𝑌) |
Ref | Expression |
---|---|
ply1opprmul | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ∙ 𝐺) = (𝐺 · 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Ring) | |
2 | ply1opprmul.y | . . . 4 ⊢ 𝑌 = (Poly1‘𝑅) | |
3 | ply1opprmul.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
4 | 2, 3 | ply1bascl 21124 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (Base‘(PwSer1‘𝑅))) |
5 | eqid 2737 | . . . 4 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
6 | eqid 2737 | . . . 4 ⊢ (Base‘(PwSer1‘𝑅)) = (Base‘(PwSer1‘𝑅)) | |
7 | 5, 6 | psr1bascl 21121 | . . 3 ⊢ (𝐹 ∈ (Base‘(PwSer1‘𝑅)) → 𝐹 ∈ (Base‘(1o mPwSer 𝑅))) |
8 | 4, 7 | syl 17 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (Base‘(1o mPwSer 𝑅))) |
9 | 2, 3 | ply1bascl 21124 | . . 3 ⊢ (𝐺 ∈ 𝐵 → 𝐺 ∈ (Base‘(PwSer1‘𝑅))) |
10 | 5, 6 | psr1bascl 21121 | . . 3 ⊢ (𝐺 ∈ (Base‘(PwSer1‘𝑅)) → 𝐺 ∈ (Base‘(1o mPwSer 𝑅))) |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝐺 ∈ 𝐵 → 𝐺 ∈ (Base‘(1o mPwSer 𝑅))) |
12 | eqid 2737 | . . 3 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
13 | ply1opprmul.s | . . 3 ⊢ 𝑆 = (oppr‘𝑅) | |
14 | eqid 2737 | . . 3 ⊢ (1o mPwSer 𝑆) = (1o mPwSer 𝑆) | |
15 | eqid 2737 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
16 | ply1opprmul.t | . . . . 5 ⊢ · = (.r‘𝑌) | |
17 | 2, 15, 16 | ply1mulr 21148 | . . . 4 ⊢ · = (.r‘(1o mPoly 𝑅)) |
18 | 15, 12, 17 | mplmulr 21142 | . . 3 ⊢ · = (.r‘(1o mPwSer 𝑅)) |
19 | eqid 2737 | . . . 4 ⊢ (1o mPoly 𝑆) = (1o mPoly 𝑆) | |
20 | ply1opprmul.z | . . . . 5 ⊢ 𝑍 = (Poly1‘𝑆) | |
21 | ply1opprmul.u | . . . . 5 ⊢ ∙ = (.r‘𝑍) | |
22 | 20, 19, 21 | ply1mulr 21148 | . . . 4 ⊢ ∙ = (.r‘(1o mPoly 𝑆)) |
23 | 19, 14, 22 | mplmulr 21142 | . . 3 ⊢ ∙ = (.r‘(1o mPwSer 𝑆)) |
24 | eqid 2737 | . . 3 ⊢ (Base‘(1o mPwSer 𝑅)) = (Base‘(1o mPwSer 𝑅)) | |
25 | 12, 13, 14, 18, 23, 24 | psropprmul 21159 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ (Base‘(1o mPwSer 𝑅)) ∧ 𝐺 ∈ (Base‘(1o mPwSer 𝑅))) → (𝐹 ∙ 𝐺) = (𝐺 · 𝐹)) |
26 | 1, 8, 11, 25 | syl3an 1162 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ∙ 𝐺) = (𝐺 · 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 1oc1o 8195 Basecbs 16760 .rcmulr 16803 Ringcrg 19562 opprcoppr 19640 mPwSer cmps 20863 mPoly cmpl 20865 PwSer1cps1 21096 Poly1cpl1 21098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-ofr 7470 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-tpos 7968 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-fzo 13239 df-seq 13575 df-hash 13897 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-sca 16818 df-vsca 16819 df-tset 16821 df-ple 16822 df-0g 16946 df-gsum 16947 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-cntz 18711 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-ring 19564 df-oppr 19641 df-psr 20868 df-mpl 20870 df-opsr 20872 df-psr1 21101 df-ply1 21103 |
This theorem is referenced by: ply1divalg2 25036 |
Copyright terms: Public domain | W3C validator |