| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1fval2 | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1fval.a | ⊢ 𝐴 = (coe1‘𝐹) |
| coe1f.b | ⊢ 𝐵 = (Base‘𝑃) |
| coe1f.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| coe1fval2.g | ⊢ 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) |
| Ref | Expression |
|---|---|
| coe1fval2 | ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1f.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | coe1f.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 3 | 1, 2 | ply1bascl 22095 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (Base‘(PwSer1‘𝑅))) |
| 4 | coe1fval.a | . . 3 ⊢ 𝐴 = (coe1‘𝐹) | |
| 5 | eqid 2730 | . . 3 ⊢ (Base‘(PwSer1‘𝑅)) = (Base‘(PwSer1‘𝑅)) | |
| 6 | eqid 2730 | . . 3 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
| 7 | coe1fval2.g | . . 3 ⊢ 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) | |
| 8 | 4, 5, 6, 7 | coe1fval3 22100 | . 2 ⊢ (𝐹 ∈ (Base‘(PwSer1‘𝑅)) → 𝐴 = (𝐹 ∘ 𝐺)) |
| 9 | 3, 8 | syl 17 | 1 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4592 ↦ cmpt 5191 × cxp 5639 ∘ ccom 5645 ‘cfv 6514 1oc1o 8430 ℕ0cn0 12449 Basecbs 17186 PwSer1cps1 22066 Poly1cpl1 22068 coe1cco1 22069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-tset 17246 df-ple 17247 df-psr 21825 df-opsr 21829 df-psr1 22071 df-ply1 22073 df-coe1 22074 |
| This theorem is referenced by: coe1sfi 22105 coe1z 22156 coe1add 22157 coe1tm 22166 deg1val 26008 |
| Copyright terms: Public domain | W3C validator |